Skip to main content
Log in

Least-squares finite-element method for shallow-water equations with source terms

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the (C)-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and (θ)-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good (C)-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbot M.B., Damsgaard A., Rodenhuis G.S.: SYSTEM 21, “Jupiter”, a design system for two-dimensional nearly horizontal flows. J. Hydraul. Res. 11, 1–28 (1973)

    Google Scholar 

  2. Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. Li Y.S., Zhan J.M.: Boussinesq-type model with boundary-fitted coordinate system. J. Waterw. Port Coast. Ocean Eng. 127, 152–160 (2001)

    Article  Google Scholar 

  4. Madsen P.A., Sorensen O.R., Schaffer H.A.: Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coast. Eng. 32, 255–287 (1997)

    Article  Google Scholar 

  5. Nwogu O.: An alternative form of the Boussinesq equations for modeling the propagation of waves from deep to shallow water. J. Waterw. Port Coast. Ocean Eng. 119(6), 618–638 (1993)

    Article  Google Scholar 

  6. Peregrine D.H.: Long waves on a beach. J. Fluid Mech. 27(4), 815–827 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ambrosi D.: Approximation of shallow water equations by Roe’s Reimann solver. Int. J. Numer. Methods Fluids 20, 157–168 (1995)

    Article  MATH  Google Scholar 

  8. Xing Y., Shu C.W.: High order finite difference WENO schemes for a class of hyperbolic systems with source terms. J. Comput. Phys. 208, 206–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Xing Y., Shu C.W.: High order well-balanced finite volume WENO schemes and Discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. LeVeque R.J.: Numerical Methods for Conservation Laws. Birkhauser-Verlag, Berlin (1990)

    MATH  Google Scholar 

  11. Toro E.F.: Reimann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    Google Scholar 

  12. Burguette J., Garcia-Navarro P.: Efficient construction of high-resolution TVD conservative schemes for equations with source terms: application to shallow water flows. Int. J. Numer. Methods Fluids 37, 209–248 (2001)

    Article  Google Scholar 

  13. LeVeque R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  14. Zhou J.G., Causon D.M., Mingham C.G., Ingram D.M.: The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168, 1–25 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rebollo T.C., Delgado A.D., Nieto E.D.F.: A family of stable numerical solvers for the shallow water equations with source terms. Comput. Methods Appl. Mech. Eng. 192, 203–225 (2003)

    Article  MATH  Google Scholar 

  16. Alessandro V., Caleffi V., Zanni A.: Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. J. Hydraul. Eng. 128(5), 460–472 (2002)

    Article  Google Scholar 

  17. Cheng, R.T.: Modeling of hydraulic systems by finite element methods. Adv. Hydrosci. 11, 207–284 (1978)

    Google Scholar 

  18. Gracia R., Kahawita R.A.: Numerical solution of the St. Venant equations with the MacCormack finite element scheme. Int. J. Numer. Methods Fluids 6, 507–527 (1986)

    Article  Google Scholar 

  19. Hervouet J.M.: Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  20. Alcrudo F., Garcia-Navarro P.: A high resolution Godunov-type scheme in finite volume for the 2D shallow water equation. Int. J. Numer. Methods Fluids 16, 489–505 (1993)

    Article  MATH  Google Scholar 

  21. Fujihara M., Borthwick A.G.L.: Godunov-type solution of curvilinear shallow-water equations. J. Hydraul. Eng. 126, 827–836 (2000)

    Article  Google Scholar 

  22. Zhou J.G.: A lattice Boltzmann model for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191, 3527–3539 (2002)

    Article  MATH  Google Scholar 

  23. Bochev P.B., Gunzburger M.D.: Finite element methods of least-squares type. SIAM Rev. 40(4), 789–837 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Deang J.M., Gunzburger M.D.: Issues related to least-squares finite element methods for the stokes equations. SIAM J. Sci. Comput. 20(3), 878–906 (1998)

    Article  MathSciNet  Google Scholar 

  25. Gunzburger M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, Boston (1989)

    MATH  Google Scholar 

  26. Jiang B.N.: The Least-Squares Finite Element Method. Springer, Berlin (1998)

    MATH  Google Scholar 

  27. Laibel J.P., Pinder G.F.: Solution of the shallow water equations by least squares collocation. Water Resour. Res. 29, 445–455 (1993)

    Article  Google Scholar 

  28. Girault V., Raviart P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithm. Springer, Berlin (1986)

    Google Scholar 

  29. Carey G.F., Jiang B.N.: Element-by-element linear and nonlinear solution scheme. Commun. Appl. Numer. Methods 2, 145–153 (1986)

    Article  MATH  Google Scholar 

  30. Reddy J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  31. Toro E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New York (2001)

    MATH  Google Scholar 

  32. Hou T.Y., LeFeloch P.: Why non-conservative schemes converges to the wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MATH  Google Scholar 

  33. Bermudez A., Vazquez M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Akoh R., Ii S., Xiao F.: A CIP/multi-moment finite volume method for shallow water equations with source terms. Int. J. Numer. Methods Fluids 56, 2245–2270 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Jye Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, SJ., Hsu, TW. Least-squares finite-element method for shallow-water equations with source terms. Acta Mech Sin 25, 597–610 (2009). https://doi.org/10.1007/s10409-009-0250-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0250-x

Keywords

Navigation