Skip to main content
Log in

Fortschritte in der Therapie der Tuberkulose

Progress in the therapy of tuberculosis

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die weltweit zunehmenden Medikamentenresistenzen und der damit verbundene schlechtere Behandlungserfolg bei komplex-resistenten Fällen stellen derzeit eine der größten Herausforderungen in der Tuberkulosetherapie dar. Die Entwicklung neuer Therapien ist ein entscheidender Baustein zur Verbesserung des Behandlungserfolgs und somit zur Kontrolle der Tuberkulose. In den letzten Jahren gab es auf diesem Gebiet einige vielversprechende Neuentwicklungen, aber auch Wiederentdeckungen altbekannter Medikamente wie Linezolid und Isoniazid. Eine Auswahl von neuen Medikamenten wie Delamanid, PA-824, Bedaquilin und Rifapentin sollen in dieser Arbeit ebenso vorgestellt werden wie neue adjuvante Therapieansätze (Vitamin D, Vitamin C und Verapamil). Abschließend soll der aktuelle Stellenwert chirurgischer Maßnahmen in der Tuberkulosetherapie vor dem Hintergrund der Resistenzproblematik dargestellt werden.

Abstract

From a global perspective, one of the key topics in the field of tuberculosis is the rising incidence of drug resistance and the associated decrease in treatment success. The development of new drugs is of great importance for the improvement of treatment success and subsequently for tuberculosis control. The developments of the recent years have brought some promising new tuberculosis drugs. Additionally, the effectiveness of established drugs, such as linezolid and isoniazid, has been shown in combination therapies. In this article some of the new developments in drug therapy, including delamanid, pa-824, bedaquiline and rifapentine, along with promising adjuvant therapies, such as vitamin D, vitamin C and verapamil will be reviewed. Furthermore, the current role of surgical interventions in tuberculosis therapy will be discussed against the background of a rising drug resistance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Robert Koch Institut (2013) RKI-Bericht zur Epidemiologie der Tuberkulose in Deutschland für 2011 http://www.rki.de/DE/Content/InfAZ/T/Tuberkulose/Download/TB2011.pdf?__blob=publicationFile. Zugegriffen: 15. Juli 2013

  2. Schaberg T, Bauer T, Castell S et al (2012) Empfehlungen zur Therapie, Chemoprävention und Chemoprophylaxe der Tuberkulose im Erwachsenen- und Kindesalter. Pneumologie 66:133–171

    Article  CAS  PubMed  Google Scholar 

  3. Falzon D, Gandhi N, Migliori GB et al (2013) Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur Respir J 42:156–168

    Article  CAS  PubMed  Google Scholar 

  4. Matsumoto M, Hashizume H, Tomishige T et al (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLos Med 3:e466

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sasaki H, Haraguchi Y, Itotani M et al (2006) Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem 49:7854–7860

    Article  CAS  PubMed  Google Scholar 

  6. Gler MT, Skripconoka V, Sanchez-Garavito E et al (2012) Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366:2151–2160

    Article  CAS  PubMed  Google Scholar 

  7. Skripconoka V, Danilovits M, Pehme L et al (2013) Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J 41:1393–1400

    Article  PubMed Central  PubMed  Google Scholar 

  8. Diacon AH, Dawson R, Groote-Bidlingmaier F von et al (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380:986–993

    Article  CAS  PubMed  Google Scholar 

  9. Andries K, Verhasselt P, Guillemont J et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    Article  CAS  PubMed  Google Scholar 

  10. Rustomjee R, Diacon AH, Allen J et al (2008) Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother 52:2831–2835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Diacon AH, Pym A, Grobusch M et al (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405

    Article  CAS  PubMed  Google Scholar 

  12. Diacon AH, Donald PR, Pym A et al (2012) Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother 56:3271–3276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee M, Lee J, Carroll MW et al (2012) Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367:1508–1518

    Article  CAS  PubMed  Google Scholar 

  14. Van Deun A, Maug AKJ, Salim MAH et al (2010) Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182:684–692

    Article  Google Scholar 

  15. Grosset JH, Tyagi S, Almeida DV et al (2013) Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 188:608–612

    Article  CAS  PubMed  Google Scholar 

  16. Böttger EC (2011) The ins and outs of Mycobacterium tuberculosis drug susceptibility testing. Clin Microbiol Infect 17:1128–1134

    Article  PubMed  Google Scholar 

  17. Schönfeld N, Bergmann T, Vesenbeckh S et al (2012) Minimal inhibitory concentrations of first-line drugs of multidrug-resistant tuberculosis isolates. Lung India 29:309–312

    Article  PubMed Central  PubMed  Google Scholar 

  18. Peloquin CA, Namdar R, Dodge AA, Nix DE (1999) Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis 3:703–710

    CAS  PubMed  Google Scholar 

  19. Sterling TR, Villarino ME, Borisov AS et al (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365:2155–2166

    Article  CAS  PubMed  Google Scholar 

  20. Martinson NA, Barnes GL, Moulton LH et al (2011) New regimens to prevent tuberculosis in adults with HIV infection. N Engl J Med 365:11–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Martineau AR, Timms PM, Bothamley GH et al (2011) High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377:242–250

    Article  CAS  PubMed  Google Scholar 

  22. Coussens AK, Wilkinson RJ, Hanifa Y et al (2012) Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci U S A 109:15449–15454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Salahuddin N, Ali F, Hasan Z et al (2013) Vitamin D accelerates clinical recovery from tuberculosis: results of the SUCCINCT Study [Supplementary Cholecalciferol in recovery from tuberculosis]. A randomized, placebo-controlled, clinical trial of vitamin D supplementation in patients with pulmonary tuberculosis’. Bmc Infect Dis 13:22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vilchèze C, Hartman T, Weinrick B, Jacobs WR Jr (2013) Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 4:1881

    Article  PubMed Central  PubMed  Google Scholar 

  25. Machado D, Couto I, Perdigão J et al (2012) Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLos One 7:e34538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Adams KN, Takaki K, Connolly LE et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gupta S, Tyagi S, Almeida DV et al (2013) Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 188:600–607

    Article  CAS  PubMed  Google Scholar 

  28. Yablonski P, Cordos I, Sokolovich E et al (2013) Surgical treatment of pulmonary tuberculosis. Eur Respir Monogr 61:20–36

    Article  Google Scholar 

  29. Kempker RR, Vashakidze S, Solomonia N et al (2012) Surgical treatment of drug-resistant tuberculosis. Lancet Infect Dis 12:157–166

    Article  PubMed Central  PubMed  Google Scholar 

  30. Marrone MT, Venkataramanan V, Goodman M et al (2013) Surgical interventions for drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis 17:6–16

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Otto-Knapp und L. Bös geben an, dass kein Interessenkonflikt besteht. T. Schaberg berät Otzuka (Delamanid). Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Otto-Knapp or T. Schaberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto-Knapp, R., Bös, L. & Schaberg, T. Fortschritte in der Therapie der Tuberkulose. Pneumologe 11, 34–41 (2014). https://doi.org/10.1007/s10405-013-0696-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-013-0696-1

Schlüsselwörter

Keywords

Navigation