Skip to main content
Log in

Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence (η) in a microgroove is higher (50% < η < 92%) than that in a T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency (η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA (2010) High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci 107:19163–19166

    Article  Google Scholar 

  • Alves SS, Orvalho SP, Vasconcelos JMT (2005) Effect of bubble contamination on rise velocity and mass transfer. Chem Eng Sci 60(1):1–9

    Article  Google Scholar 

  • Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidics droplets. Lab Chip 10:2032–2045

    Article  Google Scholar 

  • Chen H, Li J, Shum HC, Stone HA, Weitz DA (2011) Breakup of double emulsions in constrictions. Soft Matter 7:2345–2347

    Article  Google Scholar 

  • Chen YT, Chang WC, Fang WF, Ting SC, Yao DJ, Yang JT (2012) Fission and fusion of droplets in a 3-D crossing microstructure. Microfluid Nanofluid 13:239–247

    Article  Google Scholar 

  • Chen YP, Liu XD, Zhang CB, Zhao YJ (2015) Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear. Lab Chip 15:1255–1261

    Article  Google Scholar 

  • Chen Y, Gao W, Zhang C, Zhao Y (2016) Three-dimensional splitting microfluidics. Lab Chip 16:1332–1339

    Article  Google Scholar 

  • Choi SB, Lee JS (2014) Film drainage mechanism between two immiscible droplets. Microfluid Nanofluid 17(4):675–681

    Article  Google Scholar 

  • Chong ZZ, Tan SH, Gañán-Calvo AM, Tor SB, Loh NH, Nguyen NT (2016) Active droplet generation in microfluidics. Lab Chip 16(1):35–58

    Article  Google Scholar 

  • Chou WL, Lee PY, Yang CL, Huang WY, Lin YS (2015) Recent advances in applications of droplet microfluidics. Micromachines 6:1249–1271

    Article  Google Scholar 

  • Christopher GF, Bergstein J, End NB, Poon M, Nguyen C, Anna SL (2009) Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9:1102–1109

    Article  Google Scholar 

  • Chung C, Ahn KH, Lee SJ (2009) Numerical study on the dynamics of droplet passing through a cylinder obstruction in confined microchannel flow. J Non-Newtonian Fluid Mech 162:38–44

    Article  MATH  Google Scholar 

  • Chung C, Lee M, Char K, Ahn KH, Lee SJ (2010) Droplet dynamics passing through obstructions in confined microchannel flow. Microfluid Nanofluid 9:1151–1163

    Article  Google Scholar 

  • Collignon S, Friend J, Yeo L (2015) Planar microfluidic drop splitting and merging. Lab Chip 15(8):1942–1951

    Article  Google Scholar 

  • Day P, Manz A, Zhang Y (2012) Microdroplet technology: principles and emerging applications in biology and emerging applications in biology and chemistry. Springer, New York

    Book  Google Scholar 

  • Deng NN, Meng ZJ, Xie R, Ju XJ, Mou CL, Wang W, Chu LY (2011) Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. Lab Chip 11:3963–3969

    Article  Google Scholar 

  • Dietrich N, Poncin S, Midoux N, Li HZ (2008) Bubble formation dynamics in various flow-focusing microdevices. Langmuir 24(24):13904–13911

    Article  Google Scholar 

  • Dore V, Tsaoulidis D, Angeli P (2012) Mixing patterns in water plugs during water/ionic liquid segmented flow in microchannels. Chem Eng Sci 80:334–341

    Article  Google Scholar 

  • Dou M, Dominguez DC, Li X, Sanchez J, Scott GA (2014) Versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Anal Chem 86:7978–7986

    Article  Google Scholar 

  • Dou M, Garcia JM, Zhan S, Li X (2016) Interfacial nano-biosensing in microfluidic droplets for high-sensitivity detection of low-solubility molecules. Chem Comm. 52(17):3470–3473

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Dutse SW, Yusof NA (2011) Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors 11(6):5754–5768

    Article  Google Scholar 

  • Duxenneuner MR, Fischer P, Windhab EJ, Cooper-White JJ (2014) Simultaneous visualization of the flow inside and around droplets generated in microchannels. Microfluid Nanofluid 16(16):743–755

    Article  Google Scholar 

  • Fatoyinbo HO, Labeed FH (2015) Microfluidics in detection science: lab-on-a-chip technologies. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  Google Scholar 

  • Gu H, Duits MH, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12(4):2572–2597

    Article  Google Scholar 

  • Guillot P, Colin A, Ajdari A (2008) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E 78(1):139–143

    Article  Google Scholar 

  • Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, Steijn VV (2013) Dynamics of droplet breakup in a T-junction. J Fluid Mech 717(R4):1–11

    MATH  Google Scholar 

  • Huerre A, Theodoly O, Leshansky AM, Valignat MP, Cantat I, Jullien MC (2015) Droplets in microchannels: dynamical properties of the lubrication film. Phys Rev Lett 115:064501

    Article  Google Scholar 

  • Jin BJ, Yoo JY (2012) Visualization of droplet merging in microchannels using micro-PIV. Exp Fluids 52(1):235–245

    Article  Google Scholar 

  • Jin BJ, Kim YW, Lee Y, Yoo JY (2010) Droplet merging in a straight microchannel using droplet size or viscosity difference. J Micromech Microeng 20:035003

    Article  Google Scholar 

  • Jung JH, Lee KH, Destgeer G, Lee KS, Cho H, Ha BH, Sung HJ (2015) In situ seriate droplet coalescence under an optical force. Microfluid Nanofluid 18(5–6):1247–1254

    Article  Google Scholar 

  • Kinoshita H, Kaneda S, Fujii T, Oshima M (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7(3):338–346

    Article  Google Scholar 

  • Leman M, Abouakil F, Griffithsb AD, Tabeling P (2015) Droplet-based microfluidics at the femtolitre scale. Lab Chip 15:753–765

    Article  Google Scholar 

  • Leshansky AM, Pismen LM (2009) Breakup of drops in a microfluidic T junction. Phys Fluids 21:023303

    Article  MATH  Google Scholar 

  • Li ZH, Wu JK, Hu GQ, Hu GH (2012) Fluid flow in microfluidic chips. Science Press, Beijing

    Google Scholar 

  • Li Q, Chai Z, Shi B, Liang H (2014) Deformation and breakup of a liquid droplet past a solid circular cylinder: a lattice Boltzmann study. Phys Rev E 90:043015

    Article  Google Scholar 

  • Liao YX, Lucas D (2010) A literature review on mechanisms and models for the coalescence process of fluid particles. Chem Eng Sci 65:2851–2864

    Article  Google Scholar 

  • Lin BC, Qin JH (2008) Graphic laboratory on a microfluidic chip. Science Press, Beijing

    Google Scholar 

  • Lindken R, Rossi M, Grosse S, Westerweel J (2009) Micro-particle image velocimetry (mu PIV): recent developments, applications, and guidelines. Lab Chip 9(17):2551–2567

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503

    Article  Google Scholar 

  • Liu K, Ding H, Chen Y, Zhao X-Z (2007) Droplet-based synthetic method using microflow focusing and droplet fusion. Microfluid Nanofluid 3:239–243

    Article  Google Scholar 

  • Liu ZM, Cao RT, Pang Y, Shen F (2015) The influence of channel intersection angle on droplets coalescence process. Exp Fluids 56(2):1–4

    Article  Google Scholar 

  • Loewenberg M, Hinch EJ (1997) Collision of two deformable drops in shear flow. J Fluid Mech 338:299–315

    Article  MathSciNet  MATH  Google Scholar 

  • Mai DJ, Brockman C, Schroeder CM (2012) Microfluidic systems for single DNA dynamics. Soft Matter 8(41):10560–10572

    Article  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    Article  Google Scholar 

  • Marques MPC, Fernandes P (2011) Microfluidic devices: useful tools for bioprocess intensification. Molecules 16(10):8368–8401

    Article  Google Scholar 

  • Moritani T, Yamada M, Seki M (2011) Generation of uniform-size droplets by multistep hydrodynamic droplet division in microfluidic circuits. Microfluid Nanofluid 11:601–610

    Article  Google Scholar 

  • Mu X, Zheng W, Sun J, Zhang W, Jiang X (2013) Microfluidics for manipulating cells. Small 9(1):9–21

    Article  Google Scholar 

  • Nghe P, Terriac E, Schneider M, Li ZZ, Cloitre M, Abecassis B, Tabeling P (2011) Microfluidics and complex fluids. Lab Chip 11(5):788–794

    Article  Google Scholar 

  • Niu X, Gulati S, Edel JB, DeMello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    Article  Google Scholar 

  • Oishi M, Kinoshita H, Fujii T, Oshima M (2011) Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV). Meas Sci Technol 22(10):105401. doi:10.1088/0957-0233/22/10/105401

    Article  Google Scholar 

  • Pit AM, Duits MHG, Mugele F (2015) Droplet manipulations in two phase flow microfluidics. Micromachines 6:1768–1793

    Article  Google Scholar 

  • Protière S, Bazant MZ, Weitz DA, Stone HA (2010) Droplet breakup in flow past an obstacle: a capillary instability due to permeability variations. EPL 92:54002

    Article  Google Scholar 

  • Qi D, Hoelzle DJ, Rowat AC (2012) Probing single cells using flow in microfluidic devices. Eur Phys J Special Top 204(1):85–101

    Article  Google Scholar 

  • Raven JP, Marmottant P (2006) Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows. Phys Rev Lett 97(15):13129–13169

    Article  Google Scholar 

  • Rosenfeld L, Lin T, Derda R, Tang SKY (2014) Review and analysis of performance metrics of droplet microfluidics systems. Microfluid Nanofluid 16:921–939

    Article  Google Scholar 

  • Salánki R, Gerecsei T, Orgovan N, Sándor N, Péter B, Bajtay Z, Erdei A, Horvath R, Szabó B (2014) Automated single cell sorting and deposition in submicroliter drops. Appl Phys Lett 105:083703

    Article  Google Scholar 

  • Sarrazin F, Loubiere K, Prat L, Gourdon C, Bonometti T, Magnaudet J (2006) Experimental and numerical study of droplets hydrodynamics in microchannels. AIChE J 52(12):4061–4070

    Article  Google Scholar 

  • Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:3710–3718

    Article  Google Scholar 

  • Schneider T, Kreutz J, Chiu DT (2013) The potential impact of droplet microfluidics in biology. Anal Chem 85:3476–3482

    Article  Google Scholar 

  • Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80(3):839–883

    Article  Google Scholar 

  • Schoeman RM, Kemna EWM, Wolbers F, Berg AVD (2014) High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device. Electrophoresis 35:385–392

    Article  Google Scholar 

  • Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601

    Article  Google Scholar 

  • Sesen M, Alan T, Neild A (2014) Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip 14(17):3325–3333

    Article  Google Scholar 

  • Sharma S, Srisa-Art M, Scott S, Asthana A, Cass A (2013) Droplet-based microfluidics. Methods Mol Biol 949:207–230

    Article  Google Scholar 

  • Shen F, Li X, Li PCH (2014) Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations. Biomicrofluidics 8(1):014109

    Article  Google Scholar 

  • Shen F, Li Y, Liu ZM, Cao RT, Wang GR (2015a) Advances in micro-droplets coalescence using microfluidics. Chin J Anal Chem 43(12):1942–1954

    Article  Google Scholar 

  • Shen F, Xiao P, Liu ZM (2015b) Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number. Microfluid Nanofluid 19(2):403–417

    Article  Google Scholar 

  • Simon MG, Lee AP (2012) Microfluidic droplet manipulations and their applications. In: Day P, Manz Zhang AY (eds) Microdroplet technology: principles and emerging applications in biology and chemistry. Springer, New York, pp 23–50

    Chapter  Google Scholar 

  • Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83:4664–4666

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Sun CL, Liu SL, (2013) μPIV study of droplet fission in a bifurcating microchannel. In: 10th international symposium on particle image velocimetry-PIV13, pp 1–9

  • Sun X, Tang K, Smith RD, Kelly RT (2013) Controlled dispensing and mixing of pico-to nanoliter volumes using on-demand droplet-based microfluidics. Microfluid Nanofluid 15(1):117–126

    Article  Google Scholar 

  • Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298

    Article  Google Scholar 

  • Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  Google Scholar 

  • Timgren A, Tragardh G, Tragardh C (2008) Application of the PIV technique to measurements around and inside a forming drop in a liquid–liquid system. Exp Fluids 44(4):565–575

    Article  Google Scholar 

  • Wang W, Yang C, Li CM (2009) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11):1504–1506

    Article  Google Scholar 

  • Wang K, Lu Y, Tan J, Yang BD, Luo GS (2010) Generating gas/liquid/liquid three-phase microdispersed systems in double T-junctions microfluidic device. Microfluid Nanofluid 8:813–821

    Article  Google Scholar 

  • Wang K, Lu Y, Tostado CP, Yang L, Luo GS (2013a) Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control. Chem Eng J 227(7):90–96

    Article  Google Scholar 

  • Wang K, Lu YC, Yang L, Luo GS (2013b) Microdroplet coalescences at microchannel junctions with different collision angles. AIChE J 59:643–649

    Article  Google Scholar 

  • Wang Y, Wu P, Luo Z, Li Y, Liao M, Li Y, He L (2014) Controllable geometry-mediated droplet fission using “off-the-shelf” capillary microfluidics device. RSC Adv 4:31184–31187

    Article  Google Scholar 

  • Wang X, Liu GT, Wang K, Luo GS (2015a) Measurement of internal flow field during droplet formation process accompanied with mass transfer. Microfluid Nanofluid 19:757–766

    Article  Google Scholar 

  • Wang XD, Zhu CY, Wu YN, Fu TT, Ma YG (2015b) Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction. Chem Eng Sci 132:128–138

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Woerner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12(6):841–886

    Article  Google Scholar 

  • Wu HW, Huang YC, Wu CL, Lee GB (2009) Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery. Microfluid Nanofluid 7:45–56

    Article  Google Scholar 

  • Wu YN, Fu TT, Zhu CY, Ma YG, Li HZ (2014) Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing. Microfluid Nanofluid 8:275–286

    Article  Google Scholar 

  • Wu YN, Fu TT, Ma YG, Li HZ (2015) Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluid Nanofluid 18:19–27

    Article  Google Scholar 

  • Xu B, Nguyen NT, Wong TN (2011) Droplet coalescence in microfluidic systems. Micro Nanosyst 3:131–136

    Article  Google Scholar 

  • Xu B, Nguyen NT, Wong TN (2012) Temperature-induced droplet coalescence in microchannels. Biomicrofluidics 6(1):12811–128118

    Article  Google Scholar 

  • Yan Y, Guo D, Luo J, Wen SZ (2013) Numerical simulation of droplet dynamic behaviors in a convergent microchannel. Biochip J 7(4):325–334

    Article  Google Scholar 

  • Yang L, Wang K, Tan J, Lu YC, Luo GS (2012) Experimental study of microbubble coalescence in a T-junction microfluidic device. Microfluid Nanofluid 12:715–722

    Article  Google Scholar 

  • Yang SM, Yao H, Zhang D, Li WJ, Kung HF, Chen SC (2015) Droplet-based dielectrophoresis device for on-chip nanomedicine fabrication and improved gene delivery efficiency. Microfluid Nanofluid 19(1):1–9

    Article  Google Scholar 

  • Yeo LY, Chang H-C, Chan PPY, Friend JR (2011) Microfluidic devices for bioapplications. Small 7(1):12–48

    Article  Google Scholar 

  • Yoon Y, Borrell M, Park CC, Leal LG (2005) Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow. J Fluid Mech 525:355–379

    Article  MATH  Google Scholar 

  • Yoon DH, Ito J, Sekiguchi T, Shoji S (2013) Active and precise control of microdroplet division using horizontal pneumatic valves in bifurcating microchannel. Micromachines 4(2):197–205

    Article  Google Scholar 

  • Zagnoni M, Baroud CN, Cooper JM (2009) Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Phys Rev E 80(4):593–598

    Article  Google Scholar 

  • Zhou B, Wang C, Xiao X, Hui YS, Cao Y, Wen W (2015) Controllable microdroplet splitting via additional lateral flow and its application in rapid synthesis of multi-scale microspheres. RSC Adv 5:10365–10371

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Municipal Natural Science Foundation (7152012), General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM201610005002), Natural Science Foundation of China (11572013), China Scholarship Council (201406545031), Training Plan of New Talent of Beijing University of Technology (2015-RX-L02), NIH (R21AI107415 and SC2GM105584), and the NSF-PREM program (DMR 1205302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Shen or XiuJun Li.

Additional information

This article is part of the topical collection “2016 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Dalian, China” guest edited by Chun Yang, Carolyn Ren and Xiangchun Xuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Li, Y., Liu, Z. et al. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement. Microfluid Nanofluid 21, 66 (2017). https://doi.org/10.1007/s10404-017-1902-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1902-y

Keywords

Navigation