Skip to main content
Log in

Numerical simulation of heat transfer enhancement by elastic turbulence in a curvy channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Although many investigations on elastic turbulence have been conducted in recent years, two major research topics still call for in-depth mechanistic investigations. Specifically, one is heat transfer performance affected by elastic turbulence; the other is so-called high Weissenberg number problem (HWNP) in numerical simulation of viscoelastic fluid flow. Taking these two topics into account simultaneously, the coupled problem becomes heat transfer characteristic of viscoelastic fluid in elastic turbulence at high Weissenberg number (Wi) and very low Reynolds number (Re). In this work, we implement numerical simulations by embedding log-conformation reformulation algorithm into the open-source software OpenFOAM. The heat transfer process of viscoelastic fluid flow in a three-dimensional (3D) curvy channel is simulated over a wide range of Wi. For the first time, significant heat transfer enhancement induced by elastic turbulence in a curvy channel at high Wi was identified numerically. When Wi is above the critical value of O(1), the heat transfer performance is found to be dramatically improved by elastic turbulence and then approaches a saturation. From the transient analysis of flow motions in the axial and cross sections, it can be seen that the flow twists and wiggles in the curvy channel and the field synergy effect of viscoelastic fluid flow becomes more intensive than that of Newtonian fluid flow. These effects give rise to the extremely irregular flow motions in the cross section and consequently lead to heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A m :

Area of cross section

A w :

Area of heated wall

B :

Extensional component of velocity gradient

C :

Conformation tensor

c :

Specific heat

D h :

Hydraulic diameter

Fc :

Field synergy number

Gz :

Graetz number

h :

Convective heat transfer coefficient

I :

Unit matrix

k :

Thermal conductivity

L :

Equivalent length of microchannel

\(\dot{m}\) :

Mass flow rate

N :

Anti-symmetric matrix

Nu :

Nusselt number

Pr :

Prandtl number

Po:

Poiseuille number

p :

Pressure

Δp :

Pressure drop of flow

R i :

Inner ring radii of channel

R o :

Outer ring radii of channel

Re :

Reynold number

T :

Temperature

t :

Time

Wi :

Weissenberg number

U m :

Mean velocity in streamwise

U :

Velocity in streamwise

V :

Velocity in vertical direction

W :

Velocity in spanwise

β :

Ratio of solvent viscosity and total viscosity

γ :

Shear rate

Δ :

Difference

η :

Dynamic viscosity

λ :

Relaxation time

Ω :

Anti-symmetric matrixes

ρ :

Destiny

τ :

Stress tensor

υ :

Kinematic viscosity

∇:

Contravariant convected time derivative

+:

Dimensionless parameters

f :

Fluid

p :

Polymer

s :

Solvent

w :

Wall of channel

References

  • Abed WM, Whalley RD, Dennis DJC, Poole RJ (2016) Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel. J Nonnewton Fluid Mech 231:68–78. doi:10.1016/j.jnnfm.2016.03.003

    Article  Google Scholar 

  • Afonso A, Oliveira PJ, Pinho FT, Alves MA (2009) The log-conformation tensor approach in the finite-volume method framework. J Nonnewton Fluid Mech 157:55–65. doi:10.1016/j.jnnfm.2008.09.007

    Article  MATH  Google Scholar 

  • Arratia PE, Shinbrot T, Alvarez MM, Muzzio FJ (2005) Mixing of non-Newtonian fluids in steadily forced systems. Phys Rev Lett 94:084501. doi:10.1103/PhysRevLett.94.084501

    Article  Google Scholar 

  • Bird RB (1987) Dynamics of polymeric liquids, Vol I: fluid mechanics. Wiley, New York

    Google Scholar 

  • Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V (2004) Chaotic flow and efficient mixing in a microchannel with a polymer solution. Phys Rev E Stat Nonlinear Soft Matter Phys 69:066305. doi:10.1103/PhysRevE.69.066305

    Article  Google Scholar 

  • Burghelea T, Segre E, Steinberg V (2007) Elastic turbulence in von Karman swirling flow between two disks. Phys Fluids 19:053104. doi:10.1063/1.2732234

    Article  MATH  Google Scholar 

  • Fattal R, Kupferman R (2004) Constitutive laws for the matrix-logarithm of the conformation tensor. J Nonnewton Fluid Mech 123:281–285. doi:10.1016/j.jnnfm.2004.08.008

    Article  MATH  Google Scholar 

  • Fattal R, Kupferman R (2005) Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J Nonnewton Fluid Mech 126:23–37. doi:10.1016/j.jnnfm.2004.12.003

    Article  MATH  Google Scholar 

  • Favero JL, Secchi AR, Cardozo NSM, Jasak H (2010) Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J Nonnewton Fluid Mech 165:1625–1636. doi:10.1016/j.jnnfm.2010.08.010

    Article  MATH  Google Scholar 

  • Grilli M, Vazquez-Quesada A, Ellero M (2013) Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Phys Rev Lett 110:174501. doi:10.1103/PhysRevLett.110.174501

    Article  Google Scholar 

  • Groisman A, Steinberg V (1998) Mechanism of elastic instability in Couette flow of polymer solutions: experiment. Phys Fluids 10:2451–2463

    Article  Google Scholar 

  • Groisman A, Steinberg V (2000) Elastic turbulence in a polymer solution flow. Nature 405:53–55. doi:10.1038/35011019

    Article  Google Scholar 

  • Groisman A, Steinberg V (2001) Efficient mixing at low Reynolds numbers using polymer additives. Nature 410:905–908

    Article  Google Scholar 

  • Groisman A, Steinberg V (2004) Elastic turbulence in curvilinear flows of polymer solutions. New J Phys 6–29:29

    Article  Google Scholar 

  • Habla F, Tan MW, Haßlberger J, Hinrichsen O (2014) Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using the log-conformation reformulation in OpenFOAM®. J Nonnewton Fluid Mech 212:47–62. doi:10.1016/j.jnnfm.2014.08.005

    Article  Google Scholar 

  • Hsu JP, Yeh SJ (2008) Drag on two coaxial rigid spheres moving along the axis of a cylinder filled with Carreau fluid. Powder Technol 182:56–71. doi:10.1016/j.powtec.2007.05.021

    Article  Google Scholar 

  • Hulsen MA, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J Nonnewton Fluid Mech 127:27–39. doi:10.1016/j.jnnfm.2005.01.002

    Article  MATH  Google Scholar 

  • Incropera FP, Dewitt DP (1996) Fundamental of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Jun Y, Steinberg V (2011) Elastic turbulence in a curvilinear channel flow. Phys Rev E Stat Nonlinear Soft Matter Phys 84:056325. doi:10.1103/PhysRevE.84.056325

    Article  Google Scholar 

  • Larson RG (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    Article  Google Scholar 

  • Li FC, Kinoshita H, Li XB, Oishi M, Fujii T, Oshima M (2010) Creation of very-low-Reynolds-number chaotic fluid motions in microchannels using viscoelastic surfactant solution. Exp Thermal Fluid Sci 34:20–27. doi:10.1016/j.expthermflusci.2009.08.007

    Article  Google Scholar 

  • Li FC, Yu B, Wei JJ, Kawaguchi Y (2012a) Turbulent drag reduction by surfactant additives. Wiley, Singapore

    Google Scholar 

  • Li FC, Zhang HN, Cao Y, Tomoaki K, Haruyuki K, Marie O (2012b) A purely elastic instability and mixing enhancement in a 3D curvilinear channel flow. Chin Phys Lett 29:094704. doi:10.1088/0256-307x/29/9/094704

    Article  Google Scholar 

  • Li XB, Li FC, Cai WH, Zhang HN, Yang JC (2012c) Very-low-Re chaotic motions of viscoelastic fluid and its unique applications in microfluidic devices: a review. Exp Thermal Fluid Sci 39:1–16. doi:10.1016/j.expthermflusci.2011.12.014

    Article  Google Scholar 

  • Li XB, Zhang HN, Cao Y, Oshima M, Li FC (2015) Motion of passive scalar by elasticity-induced instability in curved microchannel. Adv Mech Eng 6:734175. doi:10.1155/2014/734175

    Article  Google Scholar 

  • Li XB, Oishi M, Oshima M, Li FC, Li SJ (2016) Measuring elasticity-induced unstable flow structures in a curved microchannel using confocal micro particle image velocimetry. Exp Thermal Fluid Sci 75:118–128. doi:10.1016/j.expthermflusci.2016.02.005

    Article  Google Scholar 

  • Liu NS, Khomami B (2013) Elastically induced turbulence in Taylor-Couette flow: direct numerical simulation and mechanistic insight. J Fluid Mech. doi:10.1017/jfm.2013.544

    MATH  Google Scholar 

  • Liu C, Xue CD, Chen XD, Shan L, Tian Y, Hu GQ (2015a) Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Anal Chem 87:6041–6048. doi:10.1021/acs.analchem.5b00516

    Article  Google Scholar 

  • Liu C, Xue CD, Hu GQ (2015b) Sheathless separation of particles and cells by viscoelastic effects in straight rectangular microchannels. Proc Eng 126:721–724. doi:10.1016/j.proeng.2015.11.278

    Article  Google Scholar 

  • Lu XY, Patel S, Zhang M, Joo SW, Qian SZ, Ogale A, Xuan XC (2014) An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction. Biomicrofluidics 8:021802. doi:10.1063/1.4866853

    Article  Google Scholar 

  • Lu XY, DuBose J, Joo SW, Qian SZ, Xuan XC (2015a) Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel. Biomicrofluidics 9:014108. doi:10.1063/1.4906798

    Article  Google Scholar 

  • Lu XY, Zhu L, Hua RM, Xuan XC (2015b) Continuous sheath-free separation of particles by shape in viscoelastic fluids. Appl Phys Lett 107:264102. doi:10.1063/1.4939267

    Article  Google Scholar 

  • Mckinley GH, Pakdel P, Öztekin A (1996) Rheological and geometric scaling of purely elastic flow instabilities*. J Nonnewton Fluid Mech 67:19–47

    Article  Google Scholar 

  • Meis M, Varas F, Velázquez A, Vega JM (2010) Heat transfer enhancement in micro-channels caused by vortex promoters. Int J Heat Mass Transf 53:29–40. doi:10.1016/j.ijheatmasstransfer.2009.10.013

    Article  MATH  Google Scholar 

  • Miranda AIP, Oliveira PJ (2010) Start-up times in viscoelastic channel and pipe flows. Korea-Australia Rheol J 22:65–73

    Google Scholar 

  • Pan L, Morozov A, Wagner C, Arratia PE (2013) Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys Rev Lett 110:174502. doi:10.1103/PhysRevLett.110.174502

    Article  Google Scholar 

  • Poole RJ, Lindner A, Alves MA (2013) Viscoelastic secondary flows in serpentine channels. J Nonnewton Fluid Mech 201:10–16. doi:10.1016/j.jnnfm.2013.07.001

    Article  Google Scholar 

  • Shaqfeh ESG (1996) Purely elastic instabilities in viscometric flows. Fluid Mech 28:129–185

    Article  MathSciNet  Google Scholar 

  • Tatsumi K, Takeda Y, Suga K, Nakabe K (2011) Turbulence characteristics and mixing performances of viscoelastic fluid flow in a serpentine microchannel. J Phys Conf Ser 318:092020. doi:10.1088/1742-6596/318/9/092020

    Article  Google Scholar 

  • Tatsumi K, Nagasaka W, Nakajima O, Heong CL, Nakabe K (2013) Flow and heat transfer characteristics of viscoelastic fluid flow in a serpentine channel. In: Proceedings of the seventh international symposium On turbulence, heat and mass transfer, Palermo, Italy, 24–27 Sept 2012

  • Traore B, Castelain C, Burghelea T (2015) Efficient heat transfer in a regime of elastic turbulence. J Nonnewton Fluid Mech 223:62–76. doi:10.1016/j.jnnfm.2015.05.005

    Article  MathSciNet  Google Scholar 

  • Vaithianathan T, Collins LR (2003) Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J Comput Phys 187:1–21. doi:10.1016/s0021-9991(03)00028-7

    Article  MATH  Google Scholar 

  • Whalley RD, Abed WM, Dennis DJC, Poole RJ (2015) Enhancing heat transfer at the micro-scale using elastic turbulence. Theor Appl Mech Lett 5:103–106

    Article  Google Scholar 

  • Xu JL, Gan YH, Zhang DC, Li XH (2005) Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. Int J Heat Mass Transf 48:1662–1674. doi:10.1016/j.ijheatmasstransfer.2004.12.008

    Article  Google Scholar 

  • Yong LJ, Shaqfeh ESG (1991) Viscoelastic Poiseuille flow through a curved channel: a new elastic instability. Phys Fluids 3:2043–2046

    Article  MATH  Google Scholar 

  • Zhang HN, Li FC, Cao Y, Tomoaki K, Yu B (2013) Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow. Chin Phys B 22:024703. doi:10.1088/1674-1056/22/2/024703

    Article  Google Scholar 

  • Zhang HN, Li FC, Li XB, Li DY, Cai WH, Yu B (2016) Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation. Chin Phys B 25:388–400

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (51506037, 51606054), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51421063), the Fundamental Research Funds for the Central Universities (HIT.NSRIF.201667). Zhang also thanks the financial support of China Postdoctoral Science Foundation (2013M541374), Heilongjiang Province Postdoctoral Foundation (LBH-Z15063) and China Postdoctoral International Exchange Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongna Zhang or Xiao-Bin Li.

Additional information

This article is part of the topical collection “2016 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Dalian, China” guest edited by Chun Yang, Carolyn Ren and Xiangchun Xuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 0 kb)

Animation 1

Temporal evolution of velocity field in transverse section (x–y plane) at Wi=20 (AVI 11426 kb)

Animation 2

Temporal evolution of velocity field in cross section (y–z plane) of position II at Wi=20 (AVI 9046 kb)

Animation 3

Temporal evolution of temperature distribution in transverse section (x–y plane) at Wi=20 (AVI 10978 kb)

Animation 4

Temporal evolution of velocity and temperature distributions in cross section (y–z plane)of position III at Wi=20 (AVI 34936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DY., Zhang, H., Cheng, JP. et al. Numerical simulation of heat transfer enhancement by elastic turbulence in a curvy channel. Microfluid Nanofluid 21, 25 (2017). https://doi.org/10.1007/s10404-017-1859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1859-x

Keywords

Navigation