Skip to main content
Log in

Centrifuge-based deterministic lateral displacement separation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work investigates the migration of spherical particles of different sizes in a centrifuge-driven deterministic lateral displacement device. Specifically, we use a scaled-up model to study the motion of suspended particles through a square array of cylindrical posts under the action of centrifugation. Experiments show that separation of particles by size is possible depending on the orientation of the driving acceleration with respect to the array of posts (forcing angle). We focus on the fractionation of binary suspensions and measure the separation resolution at the outlet of the device for different forcing angles. We found excellent resolution at intermediate forcing angles, when large particles are locked to move at small migration angles, but smaller particles follow the forcing angle more closely. Finally, we show that reducing the initial concentration (number) of particles, approaching the dilute limit of single particles, leads to increased resolution in the separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Fandi M, Al-Rousan M, Jaradat MAK, Al-Ebbini L (2011) New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot Comput-Integr Manuf 27:237–244. doi:10.1016/j.rcim.2010.06.003

    Article  Google Scholar 

  • Balvin M, Sohn E, Iracki T et al (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103:078301. doi:10.1103/PhysRevLett.103.078301

    Article  Google Scholar 

  • Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048. doi:10.1039/c2lc21083e

    Article  Google Scholar 

  • Bogunovic L, Fliedner M, Eichhorn R et al (2012) Chiral particle separation by a nonchiral microlattice. Phys Rev Lett 109:100603. doi:10.1103/PhysRevLett.109.100603

    Article  Google Scholar 

  • Bowman T, Frechette J, Drazer G (2012) Force driven separation of drops by deterministic lateral displacement. Lab Chip 12:2903. doi:10.1039/C2LC40234C

    Article  Google Scholar 

  • Bowman TJ, Drazer G, Frechette J (2013) Inertia and scaling in deterministic lateral displacement. Biomicrofluidics 7:064111. doi:10.1063/1.4833955

    Article  Google Scholar 

  • Burger R, Kirby D, Glynn M et al (2012) Centrifugal microfluidics for cell analysis. Curr Opin Chem Biol 16:409–414. doi:10.1016/j.cbpa.2012.06.002

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103:14779–14784

    Article  Google Scholar 

  • Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in microfluidic devices. Anal Chem 84:10621–10627. doi:10.1021/ac302074b

    Article  Google Scholar 

  • Du S, Drazer G (2015) Deterministic separation of suspended particles in a reconfigurable obstacle array. J Micromech Microeng 25:114002. doi:10.1088/0960-1317/25/11/114002

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S et al (2007) The centrifugal microfluidic Bio-Disk platform. J Micromech Microeng 17:S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  • Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401. doi:10.1017/S0022112009005941

    Article  MATH  Google Scholar 

  • Gorkin R, Park J, Siegrist J et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773. doi:10.1039/B924109D

    Article  Google Scholar 

  • Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81:9178–9182. doi:10.1021/ac9018395

    Article  Google Scholar 

  • Hanasoge S, Devendra R, Diez FJ, Drazer G (2014) Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices. Microfluid Nanofluidics 18:1195–1200. doi:10.1007/s10404-014-1514-8

    Article  Google Scholar 

  • Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys Rev E 79:061404. doi:10.1103/PhysRevE.79.061404

    Article  Google Scholar 

  • Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332. doi:10.1039/C0LC00560F

    Article  Google Scholar 

  • Holmes D, Whyte G, Bailey J et al (2014) Separation of blood cells with differing deformability using deterministic lateral displacement. Interface Focus 4:20140011. doi:10.1098/rsfs.2014.0011

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Huang R, Barber TA, Schmidt MA et al (2008) A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn 28:892–899. doi:10.1002/pd.2079

    Article  Google Scholar 

  • Inglis DW (2009) Efficient microfluidic particle separation arrays. Appl Phys Lett 94:013510. doi:10.1063/1.3068750

    Article  Google Scholar 

  • Inglis DW, Morton KJ, Davis JA et al (2008) Microfluidic device for label-free measurement of platelet activation. Lab Chip 8:925–931

    Article  Google Scholar 

  • Inglis DW, Herman N, Vesey G (2010) Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4:024109. doi:10.1063/1.3430553

    Article  Google Scholar 

  • Inglis DW, Lord M, Nordon RE (2011) Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes. J Micromech Microeng 21:054024. doi:10.1088/0960-1317/21/5/054024

    Article  Google Scholar 

  • Jiang M, Budzan K, Drazer G (2015) Fractionation by shape in deterministic lateral displacement microfluidic devices. Microfluid Nanofluidics 19:427–434. doi:10.1007/s10404-015-1572-6

    Article  Google Scholar 

  • Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710. doi:10.1038/nprot.2014.044

    Article  Google Scholar 

  • Kloke A, Fiebach AR, Zhang S et al (2014) The LabTube—a novel microfluidic platform for assay automation in laboratory centrifuges. Lab Chip 14:1527–1537. doi:10.1039/C3LC51261D

    Article  Google Scholar 

  • Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8:1–15. doi:10.1063/1.4897913

    Article  Google Scholar 

  • Li N, Kamei DT, Ho C-M (2007) On-chip continuous blood cell subtype separation by deterministic lateral displacement. In: 2nd IEEE international conference on nano/micro engineered and molecular systems, 2007. NEMS’07. IEEE, pp 932–936

  • Liu Z, Huang F, Du J et al (2013) Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics 7:011801–011801-10. doi:10.1063/1.4774308

    Google Scholar 

  • Loutherback K, Chou KS, Newman J et al (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluidics 9:1143–1149. doi:10.1007/s10404-010-0635-y

    Article  Google Scholar 

  • Loutherback K, D’Silva J, Liu L et al (2012) Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv 2:042107. doi:10.1063/1.4758131

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G et al (2006) Lab on a Cd. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

    Article  Google Scholar 

  • Mark D, von Stetten F, Zengerle R (2012) Microfluidic Apps for off-the-shelf instruments. Lab Chip 12:2464–2468. doi:10.1039/C2LC00043A

    Article  Google Scholar 

  • Mazzeo AD, Hardt DE (2013) Centrifugal casting of microfluidic components with PDMS. J Micro Nano-Manuf 1:021001. doi:10.1115/1.4023754

    Article  Google Scholar 

  • Mazzeo AD, Lustrino ME, Hardt DE (2012) Bubble removal in centrifugal casting: combined effects of buoyancy and diffusion. Polym Eng Sci 52:80–90. doi:10.1002/pen.22049

    Article  Google Scholar 

  • McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14:4139–4158. doi:10.1039/C4LC00939H

    Article  Google Scholar 

  • Morton KJ, Loutherback K, Inglis DW et al (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8:1448–1453

    Article  Google Scholar 

  • Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5:179ra47–179ra47. doi:10.1126/scitranslmed.3005616

  • Quek R, Le DV, Chiam K-H (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E 83:056301. doi:10.1103/PhysRevE.83.056301

    Article  Google Scholar 

  • Ranjan S, Zeming KK, Jureen R et al (2014) DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles. Lab Chip. doi:10.1039/C4LC00578C

    Google Scholar 

  • Risbud SR, Drazer G (2013) Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle. J Fluid Mech 714:213–237. doi:10.1017/jfm.2012.468

    Article  MathSciNet  MATH  Google Scholar 

  • Risbud SR, Drazer G (2014) Directional locking in deterministic lateral-displacement microfluidic separation systems. Phys Rev E. doi:10.1103/PhysRevE.90.012302

    Google Scholar 

  • Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics 17:1–52. doi:10.1007/s10404-013-1291-9

    Article  Google Scholar 

  • Vázquez M, Brabazon D, Shang F et al (2011) Centrifugally-driven sample extraction, preconcentration and purification in microfluidic compact discs. TrAC Trends Anal Chem 30:1575–1586. doi:10.1016/j.trac.2011.07.007

    Article  Google Scholar 

  • Zeming KK, Ranjan S, Zhang Y (2013) Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat Commun 4:1625. doi:10.1038/ncomms2653

    Article  Google Scholar 

  • Zhang B, Green JV, Murthy SK, Radisic M (2012) Label-free enrichment of functional cardiomyocytes using microfluidic deterministic lateral flow displacement. PLoS ONE 7:e37619. doi:10.1371/journal.pone.0037619

    Article  Google Scholar 

  • Zheng S, Yung R, Tai Y-C, Kasdan H (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: Micro electro mechanical systems, 2005. MEMS 2005. 18th IEEE international conference on, pp 851–854

Download references

Acknowledgments

This work was partially supported by the National Science Foundation Grant No. CBET-1339087, along with support from the Rutgers School of Engineering, the Department of Mechanical and Aerospace Engineering and an A. Walter Tyson Assistant Professorship Award. We also thank Maxim Lazoutchenkov, Brett Cecere, Maxwell Berka, Derek Dechent, Kshitij Minhas, Mark Mettias and Joseph Stephens for working on the design of the device as part of their senior design course. Finally, we acknowledge Saugata Dutt, Sandesh Gopinath and Chen Yang for their assistance with the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Drazer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Mazzeo, A.D. & Drazer, G. Centrifuge-based deterministic lateral displacement separation. Microfluid Nanofluid 20, 17 (2016). https://doi.org/10.1007/s10404-015-1686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-015-1686-x

Keywords

Navigation