Skip to main content
Log in

Photonic lab-on-chip (PhLOC) for enzyme-catalyzed reactions in continuous flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A photonic lab-on-chip (PhLOC) system consisting on an enzymatically-functionalized continuous microfluidic reactor, incorporating up to four interrogation areas for spectrometric detection is here presented. It is a versatile platform suitable for monitoring of enzymatic catalytic reactions, with potential applications in industrial biocatalysis of products of interest, as well as in continuous sensing. Horseradish peroxidase (HRP) was used as a model enzyme and immobilized in specific regions of the PhLOC to demonstrate its operativity in continuous flow. Reaction kinetics were spectrometrically determined for the HRP-catalyzed reduction of H2O2 mediated by a colored substrate (2,2′azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), ABTS), using a continuous flow experimental set-up. Maximum reaction rate was both theoretically and experimentally determined indicating that the immobilization procedure did not affect HRP catalytic properties. In addition, the limit of detection for the enzymatic reaction of the PhLOC was also obtained and found in accordance with previous reported values for other photonic systems operating in non-continuous mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfonta L, Singh AK, Willner I (2001) Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal Chem 73:91–102

    Article  Google Scholar 

  • Arnold MA (1985) Enzyme-based fiber optic sensor. Anal Chem 57:565–566

    Article  Google Scholar 

  • Asanomi Y, Yamaguchi H, Miyazaki M, Maeda H (2011) Enzyme-immobilized microfluidic process reactors. Molecules 16:6041–6059

    Article  Google Scholar 

  • Azevedo AM, Martins VC, Prazeres DM, Vojinović V, Cabral J, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247

    Article  Google Scholar 

  • Bateman RC Jr, Evans JA (1995) Using the glucose oxidase/peroxidase system in enzyme kinetics. J Chem Educ 72:A240

    Article  Google Scholar 

  • Berglund GI, Carlsson GH, Smith AT, Szöke H, Henriksen A, Hajdu J (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463–468

    Article  Google Scholar 

  • Bliss CL, McMullin JN, Backhouse CJ (2007) Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab Chip 7:1280–1287

    Article  Google Scholar 

  • Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  Google Scholar 

  • Chen H-T, Wang Y-N (2009) Optical microflow cytometer for particle counting, sizing and fluorescence detection. Microfluid Nanofluid 6:529–537

    Article  Google Scholar 

  • Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2, 2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103

    Google Scholar 

  • Chin L, Liu A, Soh Y, Lim C, Lin C (2010) A reconfigurable optofluidic Michelson interferometer using tunable droplet grating. Lab Chip 10:1072–1078

    Article  Google Scholar 

  • Choi S, Goryll M, Sin LYM, Wong PK, Chae J (2011) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid Nanofluid 10:231–247

    Article  Google Scholar 

  • Cui R, Huang H, Yin Z, Gao D, Zhu J-J (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673

    Article  Google Scholar 

  • Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306

    Article  Google Scholar 

  • Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51

    Article  MathSciNet  Google Scholar 

  • Ferreira L, Ramos M, Dordick J, Gil M (2003) Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). J Mol Catal B Enzym 21:189–199

    Article  Google Scholar 

  • Gao H, Yang J-C, Lin JY, Stuparu AD, Lee MH, Mrksich M, Odom TW (2010) Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. Nano Lett 10:2549–2554

    Article  Google Scholar 

  • Godino N, Gorkin R, Bourke K, Ducrée J (2012) Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip 12:3281–3284

    Article  Google Scholar 

  • Goldstein L (1976) Kinetic behavior of immobilized enzyme systems. Methods Enzymol 44:397–443

    Article  Google Scholar 

  • Hair M, Tripp C (1995) Alkylchlorosilane reactions at the silica surface. Colloids Surf A 105:95–103

    Article  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251. doi:10.1016/j.enzmictec.2005.10.016

    Article  Google Scholar 

  • He P, Greenway G, Haswell SJ (2010) Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics. Microfluid Nanofluid 8:565–573

    Article  Google Scholar 

  • Holmes D et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9:2881–2889

    Article  Google Scholar 

  • Hong C-C, Choi J-W, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4:109–113

    Article  Google Scholar 

  • Ibarlucea B (2013) Monolithically integrated polymeric lab-on-(bio) chips with photonic/electrochemical detection. Universidad Autónoma de Barcelona, UAB

  • Ibarlucea B et al (2010) Cell screening using disposable photonic lab on a chip systems. Anal Chem 82:4246–4251

    Article  Google Scholar 

  • Ibarlucea B, Fernández-Sánchez C, Demming S, Büttgenbach S, Llobera A (2011) Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst 136:3496–3502

    Article  Google Scholar 

  • Kanno K-i, Maeda H, Izumo S, Ikuno M, Takeshita K, Tashiro A, Fujii M (2002) Rapid enzymatic transglycosylation and oligosaccharide synthesis in a microchip reactor. Lab Chip 2:15–18

    Article  Google Scholar 

  • Laidler KJ, Bunting PS (1980) [9] The kinetics of immobilized enzyme systems. Methods Enzymol 64:227–248

    Article  Google Scholar 

  • Lee J-T, Abid A, Cheung KH, Sudheendra L, Kennedy IM (2012) Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field. Microfluid Nanofluid 13:461–468

    Article  Google Scholar 

  • Llobera A, Demming S, Wilke R, Buttgenbach S (2007) Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing. Lab Chip 7:1560–1566. doi:10.1039/b704454b

    Article  Google Scholar 

  • Llobera A, Wilke R, Büttgenbach S (2008) Enhancement of the response of poly (dimethylsiloxane) hollow prisms through air mirrors for absorbance-based sensing. Talanta 75:473–479

    Article  Google Scholar 

  • Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A. doi:10.1021/ac00258a001

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens Actuators, B 1:244–248. doi:10.1016/0925-4005(90)80209-I

    Article  Google Scholar 

  • Miyazaki M, Maeda H (2006) Microchannel enzyme reactors and their applications for processing. Trends Biotechnol 24:463–470. doi:10.1016/j.tibtech.2006.08.002

    Article  Google Scholar 

  • Miyazaki M, Nakamura H, Maeda H (2001) Improved yield of enzyme reaction in microchannel reactor. Chem Lett 5:442–443

    Article  Google Scholar 

  • Moon B-U, de Vries M, Westerink B, Verpoorte E (2012) Development and characterization of a microfluidic glucose sensing system based on an enzymatic microreactor and chemiluminescence detection Science China. Chemistry 55:515–523

    Google Scholar 

  • Ordeig O, Ortiz P, Muñoz-Berbel X, Demming S, Büttgenbach S, Fernández-Sánchez CS, Llobera A (2012) Dual photonic-electrochemical lab on a chip for online simultaneous absorbance and amperometric measurements. Anal Chem 84:3546–3553

    Article  Google Scholar 

  • Orozco J, Jiménez-Jorquera C, Fernández-Sánchez C (2012) Electrochemical performance of self-assembled monolayer gold nanoparticle-modified ultramicroelectrode array architectures. Electroanalysis 24:635–642

    Article  Google Scholar 

  • Rodríguez-Ruiz I, Llobera A, Vila-Planas J, Johnson DW, Gómez-Morales J, García-Ruiz JM (2013) Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies. Anal Chem 85:9678–9685. doi:10.1021/ac402019x

    Article  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  Google Scholar 

  • Seong GH, Heo J, Crooks RM (2003) Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal Chem 75:3161–3167

    Article  Google Scholar 

  • Shannon LM, Kay E, Lew JY (1966) Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J Biol Chem 241:2166–2172

    Google Scholar 

  • Sheldon RA (1993) Chirotechnology: industrial synthesis of optically active compounds. CRC Press, Boca Raton

    Google Scholar 

  • Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:768–772. doi:10.1002/anie.200390203

    Article  Google Scholar 

  • Strutwolf J, Herzog G, Homsy A, Berduque A, Collins CJ, Arrigan DW (2009) Potentiometric characterisation of a dual-stream electrochemical microfluidic device. Microfluid Nanofluid 6:231–240

    Article  Google Scholar 

  • Tamasko M, Nagy L, Mikolas E, Molnar GA, Wittmann I, Nagy G (2007) An approach to in situ detection of hydrogen peroxide: application of a commercial needle-type electrode. Physiol Meas 28:1533

    Article  Google Scholar 

  • Tung K-Y, Li C-C, Yang J-T (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluid 7:545–557. doi:10.1007/s10404-009-0415-8

    Article  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  Google Scholar 

  • Vila-Planas J et al (2011) Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nat Protoc 6:1642–1655

    Article  Google Scholar 

  • Washburn AL, Bailey RC (2011) Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst 136:227–236

    Article  Google Scholar 

  • Wu M-H, Lin J-L, Wang J, Cui Z, Cui Z (2009) Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment. Biomed Microdevices 11:265–273

    Article  Google Scholar 

  • Yashina A, Meldrum F, Demello A (2012) Calcium carbonate polymorph control using droplet-based microfluidics. Biomicrofluidics 6:22001–2200110

    Article  Google Scholar 

  • Zollner H (1993) Handbook of enzyme inhibitors, 2nd edn. VCH, pp 367–368

Download references

Acknowledgments

This work has been partly funded by the European Commission (Contract No. 317916) under the LiPhos project. The authors thank Dr. Luis David Patiño López for his valuable help with the interferometric experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreu Llobera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Ruiz, I., Masvidal-Codina, E., Ackermann, T.N. et al. Photonic lab-on-chip (PhLOC) for enzyme-catalyzed reactions in continuous flow. Microfluid Nanofluid 18, 1277–1286 (2015). https://doi.org/10.1007/s10404-014-1526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1526-4

Keywords

Navigation