Skip to main content
Log in

Investigation of alumina nanofluid stability by UV–vis spectrum

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, UV–vis spectrum method and dynamic light scattering (DLS) methods were used to evaluate the stability of γ-Al2O3 nanofluid. The results of DLS method indicate that zeta potential increases by increasing ultrasonic mixing time. After 150 min, zeta potential was 50 mV, which under these conditions the nanofluid was stable. The results also show that the size of the nanoclusters decreases with ultrasonic mixing time. The results obtained by UV–vis spectrum indicate that by increasing the ultrasonic mixing time, the value of maximum absorbency increases and after 30 min, it decreases gradually. After 150 min of ultrasonic mixing time, the maximum absorbency becomes constant. This mixing time can be considered as optimum mixing ultrasonic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alan R (2007) Basic principles of particles size analysis. Malvern Instruments Limited

  • Azizian R, Doroodchi E et al (2012) Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids. Ind Eng Chem Res 51:1782–1789

    Article  Google Scholar 

  • Babaei H, Keblinski P et al (2013) A proof for insignificant effect of Brownian motion-induced micro-convection on thermal conductivity by utilizing molecular dynamics simulation. J Appl Phys 113:084302

    Article  Google Scholar 

  • Chon CH, Kihma KD (2005) Thermal conductivity enhancement of nanofluids by Brownian motion. J Heat Transf 127:810

    Article  Google Scholar 

  • Chon CH, Kihma KD et al (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(7):153107

    Article  Google Scholar 

  • Das SK, Putra N et al (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574

    Article  Google Scholar 

  • Eastman J, Choi U et al. (1997) Enhanced thermal conductivity through the development of nanofluids. Materials research society symposium proceedings, Cambridge University Press, Cambridge

  • Evans W, Fish J et al (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116

    Article  Google Scholar 

  • Farahmandjou M, Sebt S et al (2009) Stability investigation of colloidal FePt nanoparticle systems by spectrophotometer analysis. Chin Phys Lett 26(2):027501

    Article  Google Scholar 

  • Ghadimi A, Saidur R et al (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17):4051–4068

    Article  Google Scholar 

  • Habibzadeha S, Kazemi-Beydokhti A et al (2010) Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route. Chem Eng J 156:471–478

    Article  Google Scholar 

  • Haiss W, Thanh NT et al (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79(11):4215–4221

    Article  Google Scholar 

  • Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta 542:28–32

    Article  Google Scholar 

  • Hong KS, Hong T et al (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88:031901

    Article  Google Scholar 

  • Huang J, Wang X et al (2009) Influence of pH on the stability characteristics of nanofluids. In: Photonics and optoelectronics, 2009. SOPO 2009. IEEE, Wuhan

  • Hwang Y, Lee J et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1):70–74

    Article  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316

    Article  Google Scholar 

  • Jiang L, Gao L et al (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94

    Article  MathSciNet  Google Scholar 

  • Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700

    Article  Google Scholar 

  • Lee S, Choi SU et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    Article  Google Scholar 

  • Lee D, Kim JW et al (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110(9):4323–4328

    Article  Google Scholar 

  • Leron V (2009) Synthesis and covalent surface modification of carbon nanotubes for preparation of stabilized nanofluid suspensions. Dissertation, McGill University

  • Li CH, Peterson G (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99(8):084314–084318

    Article  Google Scholar 

  • Li X, Zhu D et al (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463

    Article  Google Scholar 

  • Mahbubul IM, Chong TH et al (2007) Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid. Ind Eng Chem Res 53:6677–6684

    Article  Google Scholar 

  • Masuda H, Ebata A et al (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7:227–233

    Article  Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J 11(2):151–170

    Article  Google Scholar 

  • Prasher R (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901

    Article  Google Scholar 

  • Prasher R, Phelan PE et al (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534

    Article  Google Scholar 

  • Putra N, Thiesen P et al (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574

    Article  Google Scholar 

  • Rao Y (2010) Nanofluids: stability, phase diagram, rheology and applications. Particuology 8(6):549–555

    Article  Google Scholar 

  • Shalkevich N, Shalkevich A et al (2010) Thermal conductivity of concentrated colloids in different states. J Phys Chem 114(21):9568–9572

    Google Scholar 

  • Tsai C, Chien H et al (2004) Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett 58(9):1461–1465

    Article  Google Scholar 

  • Wang Xj, Li X et al (2009) Influence of pH and SDBS on the stability and thermal conductivity of nanofluids. Energy Fuels 23(5):2684–2689

    Article  Google Scholar 

  • Wang JJ, Zheng RT et al (2012) Heat conduction mechanisms in nanofluids and suspensions. Nano Today 7:124–136

    Article  Google Scholar 

  • Wei X, Wang L (2010) Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology 8(3):262–271

    Article  Google Scholar 

  • Wu C, Cho TJ et al (2010) Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E 81(1):011406

    Article  MathSciNet  Google Scholar 

  • Xian-Ju W, Xin-Fang L (2009) Influence of pH on Nanofluids’ viscosity and thermal conductivity. Chin Phys Lett 26(5):056601

    Article  Google Scholar 

  • Xian-Ju W, Hai L et al (2011) Stability of TiO2 and Al2O3 nanofluids. Chin Phys Lett 28(8):086601

    Article  Google Scholar 

  • Xie H, Wang J et al (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Article  Google Scholar 

  • Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1–17

    Google Scholar 

  • Zhu H, Zhang C et al (2007) Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45(1):226–228

    Article  Google Scholar 

  • Zhu D, Li X et al (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9(1):131–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haghshenasfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, R., Etemad, S.G., Keshavarzi, E. et al. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid Nanofluid 18, 1023–1030 (2015). https://doi.org/10.1007/s10404-014-1491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1491-y

Keywords

Navigation