Skip to main content
Log in

Deterministic fractionation of binary suspensions moving past a line of microposts

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We investigate the motion of suspended particles past a single line of equally spaced cylindrical posts that is slanted with respect to the driving force. We show that such a line of posts can fractionate particles according to their size, with small particles permeating through while the larger particles are deflected by the steric barrier created by the posts, even though the gaps between posts are larger than the particles. We perform characterization experiments driving monodisperse suspensions of particles of different size past the line of posts over the entire range of forcing orientations and present both the permeation probability through the individual gaps between the posts as well as the fraction of permeating particles through the one-dimensional array. In both cases, we observe a sharp transition from deflection to permeation mode that is a function of particle size, thus enabling separation. We then drive binary mixtures at selected orientations of the line of posts and demonstrate high separation purity and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbangla GC, Climent É, Bacchin P (2012) Experimental investigation of pore clogging by microparticles: evidence for a critical flux density of particle yielding arches and deposits. Sep Purif Technol 101:42–48

    Article  Google Scholar 

  • Alazzam A, Stiharu I, Bhat R, Meguerditchian AN (2011) Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32(11):1327–1336

    Article  Google Scholar 

  • Aran K, Fok A, Sasso LA, Kamdar N, Guan Y, Sun Q, Ündar A, Zahn JD (2011) Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11(17):2858–2868

    Article  Google Scholar 

  • Bacchin P, Marty A, Duru P, Meireles M, Aimar P (2011) Colloidal surface interactions and membrane fouling: investigations at pore scale. Adv Colloid Interface Sci 164(1–2):2–11

    Article  Google Scholar 

  • Balvin M, Sohn E, Iracki T, Drazer G, Frechette J (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103(7):078301

    Article  Google Scholar 

  • Belfort G, Davis RH, Zydney AL (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membr Sci 96(1):1–58

    Article  Google Scholar 

  • Bernate JA, Drazer G (2011) Partition-induced vector chromatography in microfluidic devices. J Colloid Interface Sci 356(1):341–351

    Article  Google Scholar 

  • Bernate JA, Drazer G (2012) Stochastic and deterministic vector chromatography of suspended particles in one-dimensional periodic potentials. Phys Rev Lett 108(21):214501

    Article  Google Scholar 

  • Bowman T, Frechette J, Drazer G (2012) Force driven separation of drops by deterministic lateral displacement. Lab Chip 12(16):2903–2908

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103(40):14779–14784

    Article  Google Scholar 

  • De Jong J, Lammertink R, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139

    Article  Google Scholar 

  • Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in microfluidic devices. Anal Chem 84(24):10621–10627

    Article  Google Scholar 

  • Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401

    Article  MATH  Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    Article  Google Scholar 

  • Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81(21):9178–9182

    Article  Google Scholar 

  • Heller M, Bruus H (2008) A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J Micromech Microeng 18(7):075030

    Article  Google Scholar 

  • Henry C, Minier JP, Lefèvre G (2012) Towards a description of particulate fouling: from single particle deposition to clogging. Adv Colloid Interface Sci 185–186:34–76

    Article  Google Scholar 

  • Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys Rev E 79:061404

    Article  Google Scholar 

  • Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11(7):1326–1332

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Huh D, Bahng J, Ling Y, Wei H, Kripfgans O, Fowlkes J, Grotberg J, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79(4):1369–1376

    Article  Google Scholar 

  • Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Google Scholar 

  • Jaffrin MY (2012) Hydrodynamic techniques to enhance membrane filtration. Annu Rev Fluid Mech 44:77–96

    Article  MathSciNet  Google Scholar 

  • Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L (2007) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10(2):251–257

    Article  Google Scholar 

  • Kirby D, Siegrist J, Kijanka G, Zavattoni L, Sheils O, O’Leary J, Burger R, Ducrée J (2012) Centrifugo-magnetophoretic particle separation. Microfluid Nanofluid 13(6):899–908

    Article  Google Scholar 

  • Koplik J, Drazer G (2010) Nanoscale simulations of directional locking. Phys Fluids 22:052005

    Article  Google Scholar 

  • Korda PT, Taylor MB, Grier DG (2002) Kinetically locked-in colloidal transport in an array of optical tweezers. Phys Rev Lett 89(12):128301

    Article  Google Scholar 

  • Kralj J, Lis M, Schmidt M, Jensen K (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78(14):5019–5025

    Article  Google Scholar 

  • Kulrattanarak T, van der Sman R, Schroën C, Boom R (2008) Classification and evaluation of microfluidic devices for continuous suspension fractionation. Adv Colloid Interface Sci 142(1):53–66

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217

    Article  Google Scholar 

  • Li Z, Drazer G (2007) Separation of suspended particles by arrays of obstacles in microfluidic devices. Phys Rev Lett 98(5):050602

    Article  Google Scholar 

  • Long BR, Heller M, Beech JP, Linke H, Bruus H, Tegenfeldt JO (2008) Multidirectional sorting modes in deterministic lateral displacement devices. Phys Rev E 78(4):046304

    Article  Google Scholar 

  • Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9(6):1143–1149

    Article  Google Scholar 

  • Luo M, Sweeney F, Risbud SR, Drazer G, Frechette J (2011) Irreversibility and pinching in deterministic particle separation. Appl Phys Lett 99:064102

    Article  Google Scholar 

  • MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426(6965):421–424

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256

    Article  Google Scholar 

  • Risbud SR, Drazer G (2013) Trajectory and distribution of suspended non-brownian particles moving past a fixed spherical or cylindrical obstacle. J Fluid Mech 714:213–237

    Article  MATH  MathSciNet  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78(11):3765–3771

    Article  Google Scholar 

  • VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79(5):2023–2030

    Article  Google Scholar 

  • Wyss HM, Blair DL, Morris JF, Stone HA, Weitz DA (2006) Mechanism for clogging of microchannels. Phys Rev E 74(6):061402

    Article  Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239

    Article  Google Scholar 

  • Zhu T, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao L (2012) Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluid Nanofluid 13(4):645–654

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge technical assistance in particle tracking by Roberto Passarro, Tsung-Chung Feng, and Siqi Du. This material is based upon work partially supported by the National Science Foundation under Grant CBET-0954840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Drazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devendra, R., Drazer, G. Deterministic fractionation of binary suspensions moving past a line of microposts. Microfluid Nanofluid 17, 519–526 (2014). https://doi.org/10.1007/s10404-013-1328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1328-0

Keywords

Navigation