Skip to main content
Log in

Precise droplet volume measurement and electrode-based volume metering in digital microfluidics

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, for the first time, we demonstrate nanoscale droplet generation from a continuous electrowetting microchannel using a simple and precise image-based droplet volume metering technique. One of the most popular ways of droplet generation in electrowetting devices is to split a droplet from a preloaded volume as a fluid reservoir. This method is effective, but lowers volume consistency after multiple droplets are generated. Impedance- and capacitance-based methods of volume metering have been successfully used in digital microfluidics, but require complex circuitry and feedback signal processing. In this work, we demonstrate nanoliter droplet generation from a continuous electrowetting channel used as a replenishable fluid reservoir which compensates for the loss of reservoir volume as droplets are sequentially split. This improves volume consistency especially for applications requiring multi-droplet generation. Based on the area of the electrode, the volume of each droplet split from the electrowetting channel can be obtained by a simple and precise image processing technique with no need for additional hardware and measurement errors of ±0.05 %. This simple technique can be used in a wide range of applications that require precise volume metering, such as immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Banerjee A, Kreit E, Liu Y, Heikenfeld J, Papautsky I (2012a) Reconfigurable virtual electrowetting channels. Lab on a Chip—Miniat Chem Biol 12:758–764

    Google Scholar 

  • Banerjee A, Liu Y, Heikenfeld J, Papautsky I (2012b) Deterministic splitting of fluid volumes in electrowetting microfluidics. Lab on a Chip—Miniat Chem Biol 12:5138–5141

    Google Scholar 

  • Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab on a Chip—Miniat Chem Biol 8:519–526

    Google Scholar 

  • Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab on a Chip—Miniat Chem Biol 10:1536–1542

    Google Scholar 

  • Berthier J, Clementz P, Raccurt O, Jary D, Claustre P, Peponnet C, Fouillet Y (2006) Computer aided design of an EWOD microdevice. Sens Actuators A Phys 127:283–294

    Article  Google Scholar 

  • Boles DJ, Benton JL, Siew GJ, Levy MH, Thwar PK, Sandahl MA, Rouse JL, Perkins LC, Sudarsan AP, Jalili R, Pamula VK, Srinivasan V, Fair RB, Griffin PB, Eckhardt AE, Pollack MG (2011) Droplet-based pyrosequencing using digital microfluidics. Anal Chem 83:8439–8447

    Article  Google Scholar 

  • Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Article  Google Scholar 

  • Ding H, Sadeghi S, Shah GJ, Chen S, Keng PY, Kim C-J, Van Dam RM (2012) Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips. Lab on a Chip—Miniat Chem Biol 12:3331–3340

    Google Scholar 

  • Gong J, Kim C-J (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip Miniat Chem Biol 8:898–906

    Article  Google Scholar 

  • Jebrail MJ, Wheeler AR (2010) Let’s get digital: digitizing chemical biology with microfluidics. Curr Opin Chem Biol 14:574–581

    Article  Google Scholar 

  • Kreit E, Dhindsa M, Yang S, Hagedon M, Zhou K, Papautsky I, Heikenfeld J (2010) Laplace barriers for electrowetting thresholding and virtual fluid confinement. Langmuir 26:18550–18556

    Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators, A 95:259–268

    Article  Google Scholar 

  • Lin YY, Welch ERF, Fair RB (2012) Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms. Sens Actuators, B Chem

    Google Scholar 

  • Luk VN, Fiddes LK, Luk VM, Kumacheva E, Wheeler AR (2012) Digital microfluidic hydrogel microreactors for proteomics. Proteomics 12:1310–1318

    Article  Google Scholar 

  • Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80:1614–1619

    Article  Google Scholar 

  • Miller EM, Ng AHC, Uddayasankar U, Wheeler AR (2011) A digital microfluidic approach to heterogeneous immunoassays. Anal Bioanal Chem 399:337–345

    Article  Google Scholar 

  • Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812

    Article  Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip—Miniat Chem Biol 2:96–101

    Google Scholar 

  • Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sensors Actuators B: Chem 98:319–327

    Article  Google Scholar 

  • Sadeghi S, Ding H, Shah GJ, Chen S, Keng PY, Kim C-CJ, Michael Van Dam R (2012) On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Anal Chem 84:1915–1923

    Article  Google Scholar 

  • Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab on a Chip—Miniat Chem Biol 8:2091–2104

    Google Scholar 

  • Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab on a Chip—Miniat Chem Biol 12:369–375

    Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip—Miniat Chem Biol 4:310–315

    Google Scholar 

  • Welch ERF, Lin Y, Madison A, Fair RB (2011) Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J 6:165–176

    Article  Google Scholar 

  • Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support by the National Science Foundation (ECCS-1001141) and the Ohio Center for Microfluidic Innovation (OCMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Papautsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Banerjee, A. & Papautsky, I. Precise droplet volume measurement and electrode-based volume metering in digital microfluidics. Microfluid Nanofluid 17, 295–303 (2014). https://doi.org/10.1007/s10404-013-1318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1318-2

Keywords

Navigation