Skip to main content
Log in

Hyper-miniaturization of monodisperse alginate–TiO2 composite particles with densely packed TiO2 nanoparticles

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report a novel technique to fabricate alginate–TiO2 composite particles with densely packed TiO2 nanoparticles. Using a microfluidic device, monodisperse sodium alginate droplets containing low-density TiO2 nanoparticles (1 or 5 w/v%) were formed in the oil phase. The sodium alginate droplets formed in the oil phase were subsequently placed on a Ca2+-loaded agarose-gel plate to induce shrinkage by water removal (from the droplets to the Ca2+-loaded agarose-gel plate) and gelation by Ca2+ transport (from the Ca2+-loaded agarose-gel plate to the droplets). Thus, the produced alginate–TiO2 composite particles containing densely packed TiO2 nanoparticles were significantly smaller than the microchannel. We also investigated the optimal conditions to successfully produce spherical composite particles by varying the oil phases, surfactants, calcium concentrations and gel strength of the agarose-gel plate. Moreover, our method could decrease the probability of channel clogging that often occurs when a colloidal suspension (e.g., nanoparticles) is used as the dispersed phase. This method facilitates the stable production of monodisperse alginate–inorganic composite particles for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham S, Park YH, Lee JK, Ha CS, Kim I (2008) Microfluidic synthesis of reversibly swelling porous polymeric microcapsules with controlled morphology. Adv Mater 20(11):2177–2182. doi:10.1002/adma.200700456

    Article  Google Scholar 

  • Abramson S, Meiller C, Beaunier P, Dupuis V, Perrigaud L, Bee A, Cabuil V (2010) Highly porous and monodisperse magnetic silica beads prepared by a green templating method. J Mater Chem 20(23):4916–4924. doi:10.1039/C000525h

    Article  Google Scholar 

  • Aketagawa K, Hirama H, Moriguchi H, Torii T (2011) Fabrication of titania microspheres using alginate microdroplets on an oil/hydrogel interface. In: The 15th international conference on miniaturized systems for chemistry and life sciences, Seattle, USA, 2–6 October 2011, pp 1615–1617

  • Aketagawa K, Hirama H, Torii T (2013) Hyper-miniaturisation of monodisperse Janus hydrogel beads with magnetic anisotropy based on Coagulation of Fe3O4 Nanoparticles. J Mater Sci Chem Eng 1(2):1–5. doi:10.4236/msce.2013.12001

    Google Scholar 

  • Aserin A (2008) Multiple emulsions : technology and applications. Wiley series on surface and interfacial chemistry. Wiley, Hoboken, NJ

    Google Scholar 

  • Callone E, Campostrini R, Carturan G, Cavazza A, Guzzon R (2008) Immobilization of yeast and bacteria cells in alginate microbeads coated with silica membranes: procedures, physico-chemical features and bioactivity. J Mater Chem 18(40):4839–4848. doi:10.1039/B807301e

    Article  Google Scholar 

  • Cao WD, Easley CJ, Ferrance JP, Landers JP (2006) Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal Chem 78(20):7222–7228. doi:10.1021/Ac060391l

    Article  Google Scholar 

  • Cao SW, Zhu YJ, Ma MY, Li L, Zhang L (2008) Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and gamma-Fe2O3: preparation and potential application in drug delivery. J Phys Chem C 112(6):1851–1856. doi:10.1021/Jp077468+

    Article  Google Scholar 

  • Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861. doi:10.1021/Ja051381p

    Article  Google Scholar 

  • Cheng J, Chen JF, Zhao M, Luo Q, Wen LX, Papadopoulos KD (2007) Transport of ions through the oil phase of W-1/O/W-2 double emulsions. J Colloid Interface Sci 305(1):175–182. doi:10.1016/j.jcis.2006.09.055

    Article  Google Scholar 

  • Du KF, Yang D, Sun Y (2009) Controlled fabrication of porous titania beads by a sol–gel templating method. Ind Eng Chem Res 48(2):755–762. doi:10.1021/Ie8011165

    Article  Google Scholar 

  • El Kadib A, Molvinger K, Guimon C, Quignard F, Brunel D (2008) Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem Mater 20(6):2198–2204. doi:10.1021/Cm800080s

    Article  Google Scholar 

  • El Kadib A, Molvinger K, Cacciaguerra T, Bousmina M, Brunel D (2011) Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Micropor Mesopor Mat 142(1):301–307. doi:10.1016/j.micromeso.2010.12.012

    Article  Google Scholar 

  • Eun TH, Kim SH, Jeong WJ, Jeon SJ, Kim SH, Yang SM (2009) Single-step fabrication of monodisperse TiO2 hollow spheres with embedded nanoparticles in microfluidic devices. Chem Mater 21(2):201–203. doi:10.1021/Cm8017133

    Article  Google Scholar 

  • Gong XQ, Wang LM, Wen WJ (2009) Design and fabrication of monodisperse hollow titania microspheres from a microfluidic droplet-template. Chem Commun 31:4690–4692. doi:10.1039/B908932b

    Article  Google Scholar 

  • Hills BP, Godward J, Debatty M, Barras L, Saturio CP, Ouwerx C (2000) NMR studies of calcium induced alginate gelation. Part II. The internal bead structure. Magn Reson Chem 38(9):719–728. doi:10.1002/1097-458x(200009)38:9<719:Aid-Mrc739>3.0.Co;2-M

    Article  Google Scholar 

  • Hirama H, Kambe T, Aketagawa K, Ota T, Moriguchi H, Torii T (2013) Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface. Langmuir ACS J Surf Colloids 29(2):519–524. doi:10.1021/la303827u

    Article  Google Scholar 

  • Hong MP, Kim JY, Vemula K, Kim HS, Yoon KB (2012) Synthesis of monodisperse mesoporous TiO2 spheres with tunable sizes between 0.6 and 3.1 mu m and effects of reaction temperature Ti source purity and type of alkylamine on size and monodispersity. Chem commun 48(35):4250–4252. doi:10.1039/C2cc30391d

    Article  Google Scholar 

  • Kim H, Luo DW, Link D, Weitz DA, Marquez M, Cheng ZD (2007) Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl Phys Lett 91(13), Article no 133106. doi:10.1063/1.2790785. http://scitation.aip.org/content/aip/journal/apl/91/13/10.1063/1.2790785

  • Kimling MC, Caruso RA (2012) Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. J Mater Chem 22(9):4073–4082. doi:10.1039/C2jm15720a

    Article  Google Scholar 

  • Lan WJ, Li SW, Xu JH, Luo GS (2010) One-step synthesis of chitosan–silica hybrid microspheres in a microfluidic device. Biomed Microdevices 12(6):1087–1095. doi:10.1007/s10544-010-9463-9

    Article  Google Scholar 

  • Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129(27):8406–8407. doi:10.1021/Ja072191c

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560. doi:10.1002/anie.200503540

    Article  Google Scholar 

  • Liu FY, Carlos LD, Ferreira RAS, Rocha J, Gaudino MC, Robitzer M, Quignard F (2008) Photoluminescent porous alginate hybrid materials containing lanthanide ions. Biomacromolecules 9(7):1945–1950. doi:10.1021/Bm8002122

    Article  Google Scholar 

  • Martinsen A, Storro I, Skjakbraek G (1992) Alginate as immobilization material.3. Diffusional properties. Biotechnol Bioeng 39(2):186–194. doi:10.1002/bit.260390210

    Article  Google Scholar 

  • Molvinger K, Quignard F, Brunel D, Boissiere M, Devoisselle JM (2004) Porous chitosan–silica hybrid microspheres as a potential catalyst. Chem Mater 16(17):3367–3372. doi:10.1021/Cm0353299

    Article  Google Scholar 

  • Nisisako T, Torii T (2007) Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater 19(11):1489–1493. doi:10.1002/adma.200700272

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2(1):24–26. doi:10.1039/b108740c

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101(1–3):23–29. doi:10.1016/j.cej.2003.11.019

    Article  Google Scholar 

  • Perullini M, Amoura M, Jobbagy M, Roux C, Livage J, Coradin T, Bilmes SA (2011) Improving bacteria viability in metal oxide hosts via an alginate-based hybrid approach. J Mater Chem 21(22):8026–8031. doi:10.1039/C1jm10684h

    Article  Google Scholar 

  • Roberts JJ, Earnshaw A, Ferguson VL, Bryant SJ (2011) Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. J Biomed Mater Res B 99B(1):158–169. doi:10.1002/Jbm.B.31883

    Article  Google Scholar 

  • Robitzer M, David L, Rochas C, Di Renzo F, Quignard F (2008) Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route. Langmuir ACS J Surf Colloids 24(21):12547–12552. doi:10.1021/La802103t

    Article  Google Scholar 

  • Saeki D, Sugiura S, Kanamori T, Sato S, Ichikawa S (2010) Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab Chip 10(3):357–362. doi:10.1039/b916318b

    Article  Google Scholar 

  • Silva SS, Ferreira RAS, Fu LS, Carlos LD, Mano JF, Reis RL, Rocha J (2005) Functional nanostructured chitosan–siloxane hybrids. J Mater Chem 15(35–36):3952–3961. doi:10.1039/B505875a

    Article  Google Scholar 

  • Sizgek GD, Griffith CS, Sizgek E, Luca V (2009) Mesoporous zirconium titanium oxides. Part 3. Synthesis and adsorption properties of unfunctionalized and phosphonate-functionalized hierarchical polyacrylonitrile-f-127-templated beads. Langmuir ACS J Surf Colloids 25(19):11874–11882. doi:10.1021/La9015299

    Article  Google Scholar 

  • Sugaya S, Yamada M, Seki M (2011) Production of extremely-small hydrogel microspheres by utilizing water-droplet dissolution in a polar solvent. In: The 15th international conference on miniaturized systems for chemistry and life sciences, Seattle, USA, 2011, pp 18–20

  • Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir ACS J surf Colloids 18(10):3854–3859. doi:10.1021/La0255830

    Article  Google Scholar 

  • Talei Franzesi G, Ni B, Ling Y, Khademhosseini A (2006) A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J Am Chem Soc 128(47):15064–15065. doi:10.1021/ja065867x

    Article  Google Scholar 

  • Wen LX, Papadopoulos KD (2001) Effects of osmotic pressure on water transport in W-1/O/W-2 emulsions. J Colloid Interface Sci 235(2):398–404. doi:10.1006/jcis2000.7384

    Article  Google Scholar 

  • Wyss HM, Blair DL, Morris JF, Stone HA, Weitz DA (2006) Mechanism for clogging of microchannels. Phys Rev E: Stat Nonlinear Soft Matter Phys 74(6 Pt 1):061402. doi:10.1103/Physreve.74.061402

    Article  Google Scholar 

  • Yeh JT, Chen CL, Huang KS (2007) Synthesis and properties of chitosan/SiO2 hybrid materials. Mater Lett 61(6):1292–1295. doi:10.1016/j.matlet.2006.07.016

    Article  Google Scholar 

  • Yin SN, Wang CF, Yu ZY, Wang J, Liu SS, Chen S (2011) Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display. Adv Mater 23(26):2915–2919. doi:10.1002/adma.201100203

    Article  Google Scholar 

  • Yuet KP, Hwang DK, Haghgooie R, Doyle PS (2010) Multifunctional Superparamagnetic Janus Particles. Langmuir ACS J Surf Colloids 26(6):4281–4287. doi:10.1021/La903348s

    Article  Google Scholar 

  • Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C (2012) One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335(6069):690–694. doi:10.1126/science.1215416

    Article  Google Scholar 

  • Zhao LB, Pan L, Zhang K, Guo SS, Liu W, Wang Y, Chen Y, Zhao XZ, Chan HLW (2009) Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 9(20):2981–2986. doi:10.1039/B907478c

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotada Hirama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aketagawa, K., Hirama, H., Moriguchi, H. et al. Hyper-miniaturization of monodisperse alginate–TiO2 composite particles with densely packed TiO2 nanoparticles. Microfluid Nanofluid 17, 217–224 (2014). https://doi.org/10.1007/s10404-013-1297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1297-3

Keywords

Navigation