Skip to main content
Log in

Fabrication and in situ characterization of microcapsules in a microfluidic system

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We have designed a microfluidic system that enables both the fabrication of calibrated capsules and the in situ characterization of their mechanical properties. The fabrication setup consists of a double flow-focusing system. A human serum albumin aqueous solution is introduced in the central channel of a first Y-junction. Intercepted by the lateral flows of a hydrophobic phase, it is dispersed into microdroplets. A cross-linking agent is then introduced at a second Y-junction allowing a membrane to form around the droplets. The time of cross-linking is controlled by the length of a wavy channel located downstream of the second junction. A cylindrical microchannel finally enables to deform and characterize the capsules thus formed. The mechanical properties of the capsule membrane are obtained by inverse analysis. The results show that the drop size increases with the flow rate ratio between the central and lateral channels. The mean shear modulus of the capsules fabricated after 23 s of cross-linking is of the order of the surface tension between the two phases indicating that a reaction time of 23 s is too short for an elastic membrane to form around the droplet. When the cross-linking time is increased to 60 s, the microcapsules surface is wrinkled, thus confirming that a solid membrane is formed around the drop. The mean shear modulus of the capsule membrane increases with the cross-linking time, which is in agreement with our previous chemical results and proves that a fine control of the mechanical properties is possible by choosing adequately the control parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andry M-C, Edwards-Lévy F, Lévy M-C (1996) Free amino group content of serum albumin microcapsules III: a study at low pH values. Int J Pharm 128:197–202

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using ’flow focusing’ in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Callewaert M, Millot JM, Lesage J, Laurent-Maquin D, Edwards-Lévy F (2009) Albumin-alginate microspheres: role of structure in binding and release of the krfk peptide. Int J Pharm 366:103–110

    Article  Google Scholar 

  • Carin M, Barthès-Biesel D, Edwards-Lévy F, Postel C, Andrei DC (2003) Compression of biocompatible liquid-filled HSA-alginate capsules: determination of the membrane mechanical properties. Biotechnol Bioeng 82:207–212

    Article  Google Scholar 

  • Chu TX, Salsac AV, Leclerc E, Barthès-Biesel D, Wurtz H, Edward-Lévy F (2011) Comparison between measurements of elasticity and free amino group content of ovalbumin microcapsule membranes: discrimination of the cross-linking degree. J Colloid Interf Sci 355:81–88

    Article  Google Scholar 

  • De Kruif CG, Weinbreck F, De Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interf Sci 9:340–349

    Article  Google Scholar 

  • Edwards-Lévy F (2011) Microparticulate drug delivery systems based on serum albumin. In: Serum albumin: structure, functions, and health impact. Nova Science

  • Edwards-Lévy F, Andry M-C, Lévy M-C (1993) Determination of free amino group content of serum albumin microcapsules using trinitrobenzenesulfonic acid: effect of variations in polycondensation pH. Int J Pharm 96:85–90

    Article  Google Scholar 

  • Edwards-Lévy F, Andry M-C, Lévy M-C (1994) Determination of free amino group content of serum albumin microcapsules: II. Effect of variation time and in terephthaloyl chloride concentration. Int J Pharm 103:253–257

    Article  Google Scholar 

  • Fery A, Weinkamer R (2007) Mechanical properties of micro and nanocapsules: Single-capsule measurements. Polym Adv Technol 48:7221–7235

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stonec HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Gautier A, Carpentier B, Dufresne M, Vu Dinh Q, Paulier P, Legallais C (2011) Impact of alginate type and bead diameter on mass transfers and the metabolic activities on encapsulated c3a cells in bioactificial liver applications. Eur Cell Mater 21:94–106

    Google Scholar 

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sc. Nutr 50:213–224

    Article  Google Scholar 

  • He P, Barthès-Biesel D, Leclerc E (2010) Flow of two immiscible liquids with low viscosity in y shaped microfluidic systems: effect of geometry. Microfluid Nanofluid 9:293–301

    Article  Google Scholar 

  • Hu X-Q, Salsac A-V, Barthès-Biesel D (2012) Flow of a spherical capsule in a pore with circular or square cross-section. J Fluid Mech 705:176–194

    Google Scholar 

  • Huang K-S, Liu M-K, Wu C-H, Yen Y-T, Lin Y-C (2007) Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process. J Micromech Microeng 17:1428–1434

    Article  Google Scholar 

  • Hurteaux R, Edwards-Lévy F, Laurent-Maquin D, Lévy M-C (2005) Coating alginate microspheres with a serum albumin-alginate membrane: application to the encapsulation of a peptide. Eur J Pharm Sci 24:187–197

    Article  Google Scholar 

  • Kissel T, Maretschek S, Packhaser C, Schnieders J, Seidel N (2006) Microencapsulation techniques for parenteral depot systems and their application in the pharmaceutical industry. In: Benita S (ed) Microencapsulation—methods and industrial applications, 2nd edn. Taylor and Francis

  • Lefebvre Y, Leclerc E, Barthès-Biesel D, Walter J, Edwards-Lévy F (2008) Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys Fluids 20:1–10

    Article  Google Scholar 

  • Lévy MC, Lefebvre S, Rahmouni M, Andry MC, Manfait M (1991) Fourier transform infrared spectroscopic studies of human serum albumin microcapsules prepared by interfacial cross-linking with terephthaloylchloride: Influence of polycondensation ph on spectra and relation with microcapsule morphology and size. J Pharm Sci 80:578–585

    Article  Google Scholar 

  • Liu L, Yang J-P, Ju X-J, Xie R, Yang L, Liang B, Chu L-Y (2009) Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent. J Colloids Interf Sci 336:100–106

    Article  Google Scholar 

  • Mercadé-Prieto R, Zhang Z (2012) Mechanical characterization of microspheres, capsules, cells and beads: a review. J Microencapsulation 29:277–285

    Article  Google Scholar 

  • Miyazawa K, Yajima I, Kaneda I, Yanaki T (2000) Preparation of a new soft capsule for cosmetics. J Cosmet Sci 51:239–252

    Google Scholar 

  • Needham D, Zhelev DV (1996) The mechanochemistry of lipid vesicles examined by micropipet manipulation technique. Surf Sci 62:373–444

    Google Scholar 

  • Ng Lee J, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  Google Scholar 

  • Nguyen QT, Bendjama Z, Clment R, Ping Z (1999) Poly(dimethylsiloxane) crosslinked in different conditions. Part I: sorption properties in water-ethyl acetate mixtures. Phys Chem 1:2761–2766

    Article  Google Scholar 

  • Poux M, Canselier J.P (2004) Techniques et appareillage, procédés d’émulsification. Technique de l’ingénieur, Chapitre 3. J2153. Techniques de l’ingénieur

  • Sawalha H, Schron K, Boom R (2011) Biodegradable polymeric microcapsules: preparation and properties. Chem Eng J 169:1–10

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Yeh C-H, Zhao Q, Lee S-J, Lin Y-C (2009) Using a t-junction microdluidic chip for monodisperse calcium alginate mircoparticles and encapsulation of nanoparticles. Sensor Actuat A Phys 151:231–236

    Article  Google Scholar 

  • Yobas L, Martens S, Ong W-L, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079

    Article  Google Scholar 

  • Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E (2006) Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 128:12205–12210

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conseil Regional de Picardie (projects μFIEC and MODCAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Leclerc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, T.X., Salsac, AV., Barthès-Biesel, D. et al. Fabrication and in situ characterization of microcapsules in a microfluidic system. Microfluid Nanofluid 14, 309–317 (2013). https://doi.org/10.1007/s10404-012-1049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1049-9

Keywords

Navigation