Skip to main content
Log in

Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microparticles incorporated with quantum-dot (QD) barcodes for multiplexed bioassays attract a great attention due to their potential applications in drug discovery, gene profiling and clinic diagnostics. However, the existing QD barcodes lack a necessary optical stability to ambient fluids or a repeatability of fluorescent profiles. We developed a new QD barcode by loading an aqueous QD mixture as a liquid core into a monodispersed polymer microcapsule by a microfluidic method to avoid those problems. We found that the QDs in the liquid cores were able to maintain their original characteristics, especially the linear relation between photoluminescence intensity and concentration. In addition, we found that the fluorescent profiles of the QD-loaded liquid cores were the same as those of the QD mixtures before being loaded inside the microcapsules. With these two properties, the QD barcodes can be predefined directly by multiplexing the emission peaks and concentrations of the QDs in the liquid cores. Furthermore, the graphical information from fluorescent images of the microcapsules, such as the sizes and numbers of the QD-loaded liquid cores, offers another dimension for barcoding to increase the coding capacity. We also presented a microfluidic method to manufacture the QD-barcoded microcapsules of size ~30 μm. These pre-definable QD barcodes with stable fluorescent profiles can be used as a platform for various high-throughput screening applications in different bioassay buffers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Birtwell S, Morgan H (2009) Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr Biol 1(5–6):345–362. doi:10.1039/b905502a

    Article  Google Scholar 

  • Birtwell SW, Galitonov GS, Morgan H, Zheludev NI (2008) Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications. Optics Commun 281(7):1789–1795. doi:10.1016/j.optcom.2007.04.066

    Article  Google Scholar 

  • Braeckmans K, De Smedt SC (2010) Colour-coded microcarriers made to move. Nat Mater 9(9):697–698. doi:10.1038/nmat2836

    Article  Google Scholar 

  • Cederquist KB, Dean SL, Keating CD (2010) Encoded anisotropic particles for multiplexed bioanalysis. Wiley Interdiscip Rev-Nanomed Nanobiotechnol 2(6):578–600. doi:10.1002/wnan.96

    Article  Google Scholar 

  • Dejneka MJ, Streltsov A, Pal S, Frutos AG, Powell CL, Yost K, Yuen PK, Muller U, Lahiri J (2003) Rare earth-doped glass microbarcodes. Proc Natl Acad Sci USA 100(2):389–393. doi:10.1073/pnas.0236044100

    Article  Google Scholar 

  • Eastman PS, Ruan WM, Doctolero M, Nuttall R, De Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FQF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064. doi:10.1021/nl060795t

    Article  Google Scholar 

  • Fournier-Bidoz S, Jennings TL, Klostranec JM, Fung W, Rhee A, Li D, Chan WCW (2008) Facile and rapid one-step mass preparation of quantum-dot barcodes. Angew Chem-Int Edit 47(30):5577–5581. doi:10.1002/anie.200800409

    Article  Google Scholar 

  • Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR (1997) Advanced multiplexed analysis with the FlowMetrix(TM) system. Clin Chem 43(9):1749–1756

    Google Scholar 

  • Gao XH, Nie SM (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 76(8):2406–2410. doi:10.1021/ac0354600

    Article  Google Scholar 

  • Giri S, Li DW, Chan WCW (2011) Engineering multifunctional magnetic-quantum dot barcodes by flow focusing. Chem Commun 47(14):4195–4197. doi:10.1039/c0cc05336h

    Article  Google Scholar 

  • Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635

    Article  Google Scholar 

  • Hayward TJ, Hong B, Vyas KN, Palfreyman JJ, Cooper JFK, Jiang Z, Jeong JR, Llandro J, Mitrelias T, Bland JAC, Barnes CHW (2010) Magnetic micro-barcodes for molecular tagging applications. J Phys D Appl Phys 43(17):175001. doi:10.1088/0022-3727/43/17/175001

    Article  Google Scholar 

  • Kellar KL, Iannone MA (2002) Multiplexed microsphere-based flow cytometric assays. Exp Hematol 30(11):1227–1237. doi:10.1016/s0301-472x(02)00922-0

    Article  Google Scholar 

  • Lee JA, Mardyani S, Hung A, Rhee A, Klostranec J, Mu Y, Li D, Chan WCW (2007) Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer. Adv Mater 19(20):3113–3118. doi:10.1002/adma.200701955

    Article  Google Scholar 

  • Lee JB, Roh YH, Um SH, Funabashi H, Cheng WL, Cha JJ, Kiatwuthinon P, Muller DA, Luo D (2009) Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat Nanotechnol 4(7):430–436. doi:10.1038/nnano.2009.93

    Article  Google Scholar 

  • Lee H, Kim J, Kim H, Kwon S (2010) Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat Mater 9(9):745–749. doi:10.1038/nmat2815

    Article  Google Scholar 

  • Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294(5540):137–141. doi:10.1126/science.294.5540.137

    Article  Google Scholar 

  • Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127(22):8058–8063. doi:10.1021/ja042494w

    Article  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908. doi:10.1021/la0480336

    Article  Google Scholar 

  • Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817):1393–1396. doi:10.1126/science.1134929

    Article  Google Scholar 

  • Rauf S, Glidle A, Cooper JM (2009) Production of quantum dot barcodes using biological self-assembly. Adv Mater 21(40):4020–4024. doi:10.1002/adma.200900223

    Article  Google Scholar 

  • Schneider MH, Willaime H, Tran Y, Rezgui F, Tabeling P (2010) Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfluidic systems of complex geometry. Anal Chem 82(21):8848–8855. doi:10.1021/ac101345m

    Article  Google Scholar 

  • Sheng WC, Kim S, Lee J, Kim SW, Jensen K, Bawendi MG (2006) In situ encapsulation of quantum dots into polymer microspheres. Langmuir 22(8):3782–3790. doi:10.1021/la051973l

    Article  Google Scholar 

  • Su X, Zhang J, Sun L, Koo T-W, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2004) Composite organic−inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett 5(1):49–54. doi:10.1021/nl0484088

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. doi:10.1126/science.1109164

    Article  Google Scholar 

  • Vaidya SV, Gilchrist ML, Maldarelli C, Couzis A (2007) Spectral bar coding of polystyrene microbeads using multicolored quantum dots. Anal Chem 79(22):8520–8530. doi:10.1021/ac0710533

    Article  Google Scholar 

  • Wang DY, Rogach AL, Caruso F (2002) Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett 2(8):857–861. doi:10.1021/nl025624c

    Article  Google Scholar 

  • Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem-Int Edit 45(37):6104–6117. doi:10.1002/anie.200600288

    Article  Google Scholar 

  • Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mat 15(14):2854–2860. doi:10.1021/cm034081k

    Article  Google Scholar 

  • Zhao Y, Zhao X, Hu J, Xu M, Zhao W, Sun L, Zhu C, Xu H, Gu Z (2009) Encoded porous beads for label-free multiplex detection of tumor markers. Adv Mater 21(5):569–572. doi:10.1002/adma.200802339

    Article  Google Scholar 

  • Zhao YJ, Shum HC, Chen HS, Adams LLA, Gu ZZ, Weitz DA (2011) Microfluidic generation of multifunctional quantum dot barcode particles. J Am Chem Soc 133(23):8790–8793. doi:10.1021/ja200729w

    Article  Google Scholar 

Download references

Acknowledgments

Bo Wu would like to acknowledge the Ph.D. scholarship from Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Qing Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Gong, HQ. Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules. Microfluid Nanofluid 13, 909–917 (2012). https://doi.org/10.1007/s10404-012-1009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1009-4

Keywords

Navigation