Skip to main content
Log in

Interfacing microfluidics to LDI-MS by automatic robotic spotting

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We developed a method of interfacing microfluidics with mass spectrometry (MS) using a robotic spotting system to automate the contact spotting process. We demonstrate that direct and automated spotting of analyte from multichannel microfluidic chips to a custom microstructured MALDI target plate was a simple, robust, and high-throughput method for interfacing parallel microchannels using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Using thermoplastic cyclic olefin copolymer (COC) polymer microfluidic chips containing eight parallel 100 μm × 46 μm microchannels connected to a single input port, spotting volume repeatability and MALDI-MS signal uniformity are evaluated for a panel of sample peptides. The COC microfluidic chips were fabricated by hot embossing and solvent bonding techniques followed by chip dicing to create open ends for MS interfacing. Using the automatic robotic spotting approach, microfluidic chip-based reversed-phase liquid chromatography (RPLC) separations were interfaced with electrochemically etched nanofilament silicon (nSi) target substrate, demonstrating the potential of this approach toward chip-based microfluidic separation coupled with matrix-free laser desorption/ionization mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Brivio M, Tas NR, Goedbloed MH, Gardeniers HJGE, Verboom W, van den Berg A, Reinhoudt DN (2005) A MALDI-chip integrated system with a monitoring window. Lab on a Chip 5:378–381

    Article  Google Scholar 

  • Buch JS, Rosenberger F, Highsmith WE, Kimball C, DeVoe DL, Lee CS (2005) Denaturing gradient-based two-dimensional gene mutation scanning in a polymer microfluidic network. Lab on a Chip 5:392–400

    Article  Google Scholar 

  • Chan JH, Timperman AT, Qin D, Aebersold R (1999) Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry. Anal Chem 71:4437–4444

    Article  Google Scholar 

  • Chen X, Wu H, Mao C, Whitesides GM (2002) A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal Chem 74:1772–1778

    Article  Google Scholar 

  • Chen CF, Liu J, Hromada LP, Tsao CW, Chang CC, DeVoe DL (2009) High-pressure needle interface for thermoplastic microfluidics. Lab on a Chip 9:50–55

    Article  Google Scholar 

  • Cui H, Horiuchi K, Dutta P, Ivory CF (2005) Multistage isoelectric focusing in polymeric microchips. Anal Chem 77:7878–7886

    Article  Google Scholar 

  • Dahlin AP, Wetterhall M, Liljegren G, Bergstrom SK, Andren P, Nyholm L, Markides KE, Bergquist J (2005) Capillary electrophoresis coupled to mass spectrometry from a polymer modified poly(dimethylsiloxane) microchip with an integrated graphite electrospray tip. Analyst 130:193–199

    Article  Google Scholar 

  • DeVoe DL, Lee CS (2006) Microfluidic technologies for MALDI-MS in proteomics. Electrophoresis 27:3559–3568

    Article  Google Scholar 

  • Ekstrom S, Ericsson D, Onnerfjord P, Bengtsson M, Nilsson J, Marko-Varga G, Laurell T (2001a) Signal amplification using “spot on-a-chip” technology for the identification of proteins via MALDI-TOF MS. Anal Chem 73:214–219

    Article  Google Scholar 

  • Ekstrom S, Nilsson J, Helldin G, Laurell T, Marko-Varga G (2001b) Disposable polymeric high-density nanovial arrays for matrix assisted laser desorption/ionization-time of flight-mass spectrometry: II. Biological applications. Electrophoresis 22:3984–3992

    Article  Google Scholar 

  • Ericson C, Phung QT, Horn DM, Peters EC, Fitchett JR, Ficarro SB, Salomon AR, Brill LM, Brock A (2003) An automated noncontact deposition interface for liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:2309–2315

    Article  Google Scholar 

  • Foret F, Preisler J (2002) Liquid phase interfacing and miniaturization in matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 2:360–372

    Article  Google Scholar 

  • Freire SLS, Yang H, Wheeler AR (2008) A practical interface for microfluidics and nanoelectrospray mass spectrometry. Electrophoresis 29:1836–1843

    Article  Google Scholar 

  • Gustafsson M, Hirschberg D, Palmberg C, Jornvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76:345–350

    Article  Google Scholar 

  • Hung KC, Ding H, Guo BC (1999) Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins. Anal Chem 71:518–521

    Article  Google Scholar 

  • Jeonghoon L, Steven AS, Kermit KM (2009) Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom 44:579–593

    Article  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301

    Article  Google Scholar 

  • Laurell T, Nilsson J, Marko-Varga G (2001) Silicon microstructures for high-speed and high-sensitivity protein identifications. J Chromatogr B 752:217–232

    Article  Google Scholar 

  • Lazar IM, Ramsey RS, Sundberg S, Ramsey JM (1999) Subattomole-sensitivity microchip nanoelectrospray source with time-of-flight mass spectrometry detection. Anal Chem 71:3627–3631

    Article  Google Scholar 

  • Le Gac S, Arscott S, Cren-Olive C, Rolando C (2003) Two-dimensional microfabricated sources for nanoelectrospray. J Mass Spectrom 38:1259–1264

    Article  Google Scholar 

  • Lee J, Musyimi HK, Soper SA, Murray KK (2008) Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS. J Am Soc Mass Spectrom 19:964–972

    Article  Google Scholar 

  • Li Y, Buch JS, Rosenberger F, DeVoe DL, Lee CS (2004) Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network. Anal Chem 76:742–748

    Article  Google Scholar 

  • Little DP, Cornish TJ, ODonnell MJ, Braun A, Cotter RJ, Koster H (1997) MALDI on a chip: analysis of arrays of low femtomole to subfemtomole quantities of synthetic oligonucleotides and DNA diagnostic products dispensed by a piezoelectric pipet. Anal Chem 69:4540–4546

    Article  Google Scholar 

  • Liu JK, Chen CF, Tsao CW, Chang CC, Chu CC, DeVoe DL (2009) Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed-phase polymethacrylate monoliths. Anal Chem 81:2545–2554

    Article  Google Scholar 

  • Medintz IL, Paegel BM, Mathies RA (2001) Microfabricated capillary array electrophoresis DNA analysis systems. J Chromatogr A 924:265–270

    Article  Google Scholar 

  • Mery E, Ricoul F, Sarrut N, Constantin O, Delapierre G, Garin J, Vinet F (2008) A silicon microfluidic chip integrating an ordered micropillar array separation column and a nano-electrospray emitter for LC/MS analysis of peptides. Sens Actuators B 134:438–446

    Article  Google Scholar 

  • Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJ (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab on a Chip 6:1213–1219

    Article  Google Scholar 

  • Musyimi HK, Guy J, Narcisse DA, Soper SA, Murray KK (2005) Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet. Electrophoresis 26:4703–4710

    Article  Google Scholar 

  • Onnerfjord P, Ekstrom S, Bergquist J, Nilsson J, Laurell T, Marko-Varga G (1999) Homogeneous sample preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13:315–322

    Article  Google Scholar 

  • Pinto DM, Ning YB, Figeys D (2000) An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometer for protein identification. Electrophoresis 21:181–190

    Article  Google Scholar 

  • Ramsey RS, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69:1174–1178

    Article  Google Scholar 

  • Ro KW, Liu H, Knapp DR (2006) Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. J Chromatogr A 1111:40–47

    Article  Google Scholar 

  • Schilling M, Nigge W, Rudzinski A, Neyer A, Hergenroder R (2004) A new on-chip ESI nozzle for coupling of MS with microfluidic devices. Lab on a Chip 4:220–224

    Article  Google Scholar 

  • Schuerenbeg M, Luebbert C, Eickhoff H, Kalkum M, Lehrach H, Nordhoff E (2000) Prestructured MALDI-MS sample supports. Anal Chem 72:3436–3442

    Article  Google Scholar 

  • Shen Z, Liu XJ, Long ZC, Liu DY, Ye NN, Qin JH, Dai ZP, Lin BC (2006) Parallel analysis of biomolecules on a microfabricated capillary array chip. Electrophoresis 27:1084–1092

    Article  Google Scholar 

  • Stachowiak TB, Rohr T, Hilder EF, Peterson DS, Yi MQ, Svec F, Frechet JMJ (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24:3689–3693

    Article  Google Scholar 

  • Su J, Bringer MR, Ismagilov RF, Mrksich M (2005) Combining microfluidic networks and peptide arrays for multi-enzyme assays. J Am Chem Soc 127:7280–7281

    Article  Google Scholar 

  • Tang KQ, Lin YH, Matson DW, Kim T, Smith RD (2001) Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Anal Chem 73:1658–1663

    Article  Google Scholar 

  • Tsao CW, Kumar P, Liu JK, DeVoe L (2008a) Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry. Anal Chem 80:2973–2981

    Article  Google Scholar 

  • Tsao CW, Liu J, DeVoe DL (2008b) Droplet formation from hydrodynamically coupled capillaries for parallel microfluidic contact spotting. J Micromech Microeng 18

  • Wang YX, Cooper JW, Lee CS, DeVoe DL (2004) Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes. Lab on a Chip 4:363–367

    Article  Google Scholar 

  • Wang YX, Zhou Y, Balgley BM, Cooper JW, Lee CS, DeVoe DL (2005) Electrospray interfacing of polymer microfluidics to MALDI-MS. Electrophoresis 26:3631–3640

    Article  Google Scholar 

  • Wang J, Sui G, Mocharla VP, Lin RJ, Phelps ME, Kolb HC, Tseng H-R (2006a) Integrated microfluidics for parallel screening of an in situ click chemistry library. Angew Chem Int Ed 45:5276–5281

    Article  Google Scholar 

  • Wang ZH, Meng YH, Ying PQ, Qi C, Jin G (2006b) A label-free protein microfluidic array for parallel immunoassays. Electrophoresis 27:4078–4085

    Article  Google Scholar 

  • Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399:243–246

    Article  Google Scholar 

  • Wheeler AR, Moon H, Kim CJ, Loo JA, Garrell RL (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838

    Article  Google Scholar 

  • Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540

    Article  Google Scholar 

  • Xiong SX, Ding QX, Zhao ZW, Chen WZ, Wang GH, Liu SJ (2003) A new method to improve sensitivity and resolution in matrix-assisted laser desorption/ionization time of flight mass spectrometry. Proteomics 3:265–272

    Article  Google Scholar 

  • Xue QF, Dunayevskiy YM, Foret F, Karger BL (1997a) Integrated multichannel microchip electrospray ionization mass spectrometry: analysis of peptides from on-chip tryptic digestion of melittin. Rapid Commun Mass Spectrom 11:1253–1256

    Article  Google Scholar 

  • Xue QF, Foret F, Dunayevskiy YM, Zavracky PM, McGruer NE, Karger BL (1997b) Multichannel microchip electrospray mass spectrometry. Anal Chem 69:426–430

    Article  Google Scholar 

  • Yin NF, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor TV (2005) Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem 77:527–533

    Article  Google Scholar 

  • Zhang BL, Foret F, Karger BL (2001) High-throughput microfabricated CE/ESI–MS: Automated sampling from a microwell plate. Anal Chem 73:2675–2681

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NIGMS grant # R01GM072512 and National Science Council, Taiwan grant # NSC 97-2218-E-008-010-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wen Tsao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsao, CW., Tao, S., Chen, CF. et al. Interfacing microfluidics to LDI-MS by automatic robotic spotting. Microfluid Nanofluid 8, 777–787 (2010). https://doi.org/10.1007/s10404-009-0510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0510-x

Keywords

Navigation