Skip to main content
Log in

Optofluidics technology based on colloids and their assemblies

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Optofluidic technology is believed to provide a breakthrough for the currently underlying problems in microfluidics and photonics/optics by complementary integration of fluidics and photonics. The key aspect of the optofluidics technology is based on the use of fluidics for tuning the optical properties and addressing various functional materials inside of microfluidic channels which have build-in photonic structures. Through the optofluidic integrations, fluidics enhances the controllability and tunability of optical systems. In particular, colloidal dispersion gives novel properties such as photonic band-gaps and enhanced Raman spectrum that conventional optofluidic devices cannot exhibit. In this paper, the state of the art of the colloidal dispersions is reviewed especially for optofluidic applications. From isolated singlet colloidal particles to colloidal clusters, their self-organized assemblies lead to optical manipulation of the photonic/optical properties and responses. Finally, we will discuss the prospects of the integrated optofluidics technology based on colloidal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Google Scholar 

  • Bartlett P, Campbell A (2005) Three-dimensional binary superlattices of oppositely charged colloids. Phys Rev Lett 95:128302

    Article  Google Scholar 

  • Battersby B, Bryant D, Meutermans W, Matthews D, Smythe M, Trau M (2000) Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry. J Am Chem Soc 122:2138–2139

    Article  Google Scholar 

  • Bishop A, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (2004) Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92:198104

    Article  Google Scholar 

  • Brody J, Quake S (1999) A self-assembled microlensing rotational probe. Appl Phys Lett 74:144–146

    Article  Google Scholar 

  • Cai M, Painter O, Vahala K, Sercel P (2000) Fiber-coupled microsphere laser. Opt Lett 25:1430–1432

    Article  Google Scholar 

  • Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22

    Article  Google Scholar 

  • Caruso F (2004) Colloids and colloid assemblies. Wiley-VCH, New York

  • Cho YS, Yi GR, Kim SH, Pine D, Yang SM (2005a) Colloidal clusters of microspheres from water-in-oil emulsions. Chem Mater 17:5006–5013

    Article  Google Scholar 

  • Cho YS, Yi GR, Lim JM, Kim SH, Manoharan V, Pine D, Yang S (2005b) Self-organization of bidisperse colloids in water droplets. J Am Chem Soc 127:15968–15975

    Article  Google Scholar 

  • Choi DG, Jang SG, Kim S, Lee E, Han CS, Yang SM (2006) Multifaceted and nanobored particle arrays sculpted using colloidal lithography. Adv Func Mater 16:33–40

    Article  Google Scholar 

  • Choi DG, Kim S, Lee E, Yang SM (2005) Particle arrays with patterned pores by nanomachining with colloidal masks. J Am Chem Soc 127:1636–1637

    Article  Google Scholar 

  • Choi DG, Yu HK, Jang SG, Yang SM (2004) Colloidal lithographic nanopatterning via reactive ion etching. J Am Chem Soc 126:7019–7025

    Article  Google Scholar 

  • Deegan R, Bakajin O, Dupont T, Huber G, Nagel S, Witten T (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Article  Google Scholar 

  • Domachuk P, Cronin-Golomb M, Eggleton B, Mutzenich S, Rosengarten G, Mitchell A (2005) Application of optical trapping to beam manipulation in optofluidics. Opt Exp 13:7265–7275

    Article  Google Scholar 

  • Foulger S, Jiang P, Lattam A, Smith D, Ballato J (2001) Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays. Langmuir 17:6023–6026

    Article  Google Scholar 

  • Friese M, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394:348–350

    Article  Google Scholar 

  • Fudouzi H, Xia Y (2003) Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 19:9653–9660

    Article  Google Scholar 

  • Glotzer S (2004) Some assembly required. Science 306:419–420

    Article  Google Scholar 

  • Graf C, van Blaaderen A (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18:524–534

    Article  Google Scholar 

  • Graf C, Vossen D, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700

    Article  Google Scholar 

  • Gu Z, Horie R, Kubo S, Yamada Y, Fujishima A, Sato O (2002) Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew Chem Int Edit 41:1153–1156

    Article  Google Scholar 

  • Haynes C, Van Duyne R (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433

    Article  Google Scholar 

  • Holtz J, Asher S (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  Google Scholar 

  • Jackson J, Halas N (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105:2743–2746

    Article  Google Scholar 

  • Jackson J, Westcott S, Hirsch L, West J, Halas N (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257–259

    Article  Google Scholar 

  • Jensen-McMullin C, Lee H, Lyons E (2005) Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Opt Exp 13:2634–2642

    Article  Google Scholar 

  • Kalsin A, Fialkowski M, Paszewski M, Smoukov S, Bishop K, Grzybowski B (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424

    Article  Google Scholar 

  • Kamp U, Kitaev V, von Freymann G, Ozin G, Mabury S (2005) Colloidal crystal capillary columns—towards optical chromatography. Adv Mater 17:438–443

    Article  Google Scholar 

  • Kegel W, van Blaaderen A (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287:290–293

    Article  Google Scholar 

  • Kim E, Xia Y, Whitesides G (1996) Two- and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries. Adv Mater 8:245–247

    Article  Google Scholar 

  • Kim SH, Lee SY, Yi GR, Pine D, Yang SM (2006) Microwave-assisted self-organization of colloidal particles in confining aqueous droplets. J Am Chem Soc 128:10897–10904

    Article  Google Scholar 

  • Knight J, Dnbreuil N, Sandoghdar V, Hare J, Lefevreseguin V, Raimond J, Haroche S (1995) Mapping whispering-gallery modes in microspheres with a near-field probe. Opt Lett 20:1515–1517

    Article  Google Scholar 

  • Korda P, Taylor M, Grier D (2002) Kinetically locked-in colloidal transport in an array of optical tweezers. Phys Rev Lett 89:128301

    Article  Google Scholar 

  • Ladavac K, Grier D (2004) Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Exp 12:1144–1149

    Article  Google Scholar 

  • Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J (2006) An optically driven pump for microfluidics. Lab Chip 6:735–739

    Article  Google Scholar 

  • Lee SK, Yi GR, Yang SM (2006) High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. Lab Chip 6:1171–1177

    Article  Google Scholar 

  • Leunissen M, Christova C, Hynninen A, Royall C, Campbell A, Imhof A, Dijkstra M, van Roij R, van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240

    Article  Google Scholar 

  • Levin C, Bishnoi S, Grady N, Halas N (2006) Determining the conformation of thiolated poly(ethylene glycol) on Au nanoshells by surface-enhanced Raman scattering spectroscopic assay. Anal Chem 78:3277–3281

    Article  Google Scholar 

  • Liu G, Kim J, Lu Y, Lee L (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27–32

    Article  Google Scholar 

  • Liu G, Lee L (2005) Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett 87:074101

    Article  Google Scholar 

  • MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424

    Article  Google Scholar 

  • Maerkl S, Quake S (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science 315:233–237

    Article  Google Scholar 

  • Malinsky M, Kelly K, Schatz G, Van Duyne R (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482

    Article  Google Scholar 

  • Manoharan V, Elsesser M, Pine D (2003) Dense packing and symmetry in small clusters of microspheres. Science 301:483–487

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton B: Integrated optofluidics (2007a) A new river of light. Nat Photonics 1:106–114

    Article  Google Scholar 

  • Monat C, Grillet C, Domachuk R, Smith C, Magi E, Moss D, Nguyen H, Tomljenovic-Hanic S, Cronin-Golomb M, Eggleton B, Freeman D, Madden S, Luther-Davies B, Mutzenich S, Rosengarten G, Mitchell A (2007b) Frontiers in microphotonics: tunability and all-optical control. Laser Phys Lett 4:177–186

    Article  Google Scholar 

  • Moon JH, Kim S, Yi GR, Lee YH, Yang SM (2004a) Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir 20:2033–2035

    Article  Google Scholar 

  • Moon JH, Yi GR, Yang SM, Pine D, Park SB (2004b) Electrospray-assisted fabrication of uniform photonic balls. Adv Mater 16:605–609

    Article  Google Scholar 

  • Mukaiyama T, Takeda K, Miyazaki H, Jimba Y, Kuwata-Gonokami M (1999) Tight-binding photonic molecule modes of resonant bispheres. Phys Rev Lett 82:4623–4626

    Article  Google Scholar 

  • Neale S, Macdonald M, Dholakia K, Krauss T (2005) All-optical control of microfluidic components using form birefringence. Nat Mater 4:530–533

    Article  Google Scholar 

  • Ozin G, Arsenault A (2005) Nanochemistry. RSC Publishing, London

  • Park T, Lee S, Seong GH, Choo J, Lee EK, Kim Y, Ji WH, Hwang SY, Gweon DG, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442

    Article  Google Scholar 

  • Pham T, Jackson J, Halas N, Lee T (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18:4915–4920

    Article  Google Scholar 

  • Prodan E, Radloff C, Halas N, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  Google Scholar 

  • Psaltis D, Quake S, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Russel W, Saville D, Scholwalter W (1989) Colloidal dispersions. Cambridge University Press, Cambridge

  • Shevchenko E, Talapin D, Kotov N, O’Brien S, Murray C (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59

    Article  Google Scholar 

  • Shiu J, Chen P (2005) Active patterning using an addressable microfluidic network. Adv Mater 17:1866–1869

    Article  Google Scholar 

  • Shiu J, Kuo C, Chen P (2004) Actively controlled self-assembly of colloidal crystals in microfluidic networks by electrocapillary forces. J Am Chem Soc 126:8096–8097

    Article  Google Scholar 

  • Spillane S, Kippenberg T, Vahala K (2002) Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415:621–623

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  Google Scholar 

  • Talley C, Jackson J, Oubre C, Grady N, Hollars C, Lane S, Huser T, Nordlander P, Halas N (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    Article  Google Scholar 

  • Terray A, Oakey J, Marr D (2002) Microfluidic control using colloidal devices. Science 296:1841–1844

    Article  Google Scholar 

  • Unger M, Chou H, Thorsen T, Scherer A, Quake S (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Velev O, Lenhoff A, Kaler E (2000) A class of microstructured particles through colloidal crystallization. Science 287:2240–2243

    Article  Google Scholar 

  • Vernooy D, Ilchenko V, Mabuchi H, Streed E, Kimble H (1998) High-Q measurements of fused-silica microspheres in the near infrared. Opt Lett 23:247–249

    Google Scholar 

  • Vlasov Y, Bo X, Sturm J, Norris D (2001) On-chip natural assembly of silicon photonic bandgap crystals. Nature 414:289–293

    Article  Google Scholar 

  • Vossen D, Fific D, Penninkhof J, van Dillen T, Polman A, van Blaaderen A (2005) Combined optical tweezers/ion beam technique to tune colloidal masks for nanolithography. Nano Lett 5:1175–1179

    Article  Google Scholar 

  • Wang H, Brandl D, Nordlander P, Halas N (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53–62

    Article  Google Scholar 

  • Xia Y, Gates B, Li Z (2001) Self-assembly approaches to three-dimensional photonic crystals. Adv Mater 13:409–413

    Article  Google Scholar 

  • Yang P, Rizvi A, Messer B, Chmelka B, Whitesides G, Stucky G (2001) Patterning porous oxides within microchannel networks. Adv Mater 13:427–431

    Article  Google Scholar 

  • Yang SM, Jang SG, Choi DG, Kim SR, Yu HK (2006) Nanomachining by colloidal lithography. Small 2:458–475

    Article  Google Scholar 

  • Yethiraj A, van Blaaderen A (2003) A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421:513–517

    Article  Google Scholar 

  • Yi GR, Jeon SJ, Thorsen T, Manoharan V, Quake S, Pine D, Yang SM (2003a) Generation of uniform photonic balls by template-assisted colloidal crystallization. Syn Met 139:803–806

    Article  Google Scholar 

  • Yi GR, Manoharan V, Klein S, Brzezinska K, Pine D, Lange F, Yang SM (2002) Monodisperse micrometer-scale spherical assemblies of polymer particles. Adv Mater 14:1137–1140

    Article  Google Scholar 

  • Yi GR, Manoharan V, Michel E, Elsesser M, Yang SM, Pine D (2004) Colloidal clusters of silica or polymer microspheres. Adv Mater 16:1204–1208

    Article  Google Scholar 

  • Yi GR, Thorsen T, Manoharan V, Hwang MJ, Jeon SJ, Pine D, Quake S, Yang SM (2003b) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304

    Article  Google Scholar 

  • Zhang Z, Glotzer S (2004) Self-assembly of patchy particles. Nano Lett 4:1407–1413

    Article  Google Scholar 

  • Zhang Z, Keys A, Chen T, Glotzer S (2005) Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21:11547–11551

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported a grant from the Creative Research Initiative Program of the Ministry of Science and Technology for “Complementary Hybridization of Optical and Fluidic Devices for Integrated Optofluidic Systems”. The authors also appreciate partial support from the Brain Korea 21 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Man Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SK., Kim, SH., Kang, JH. et al. Optofluidics technology based on colloids and their assemblies. Microfluid Nanofluid 4, 129–144 (2008). https://doi.org/10.1007/s10404-007-0218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0218-8

Keywords

Navigation