Skip to main content
Log in

Tunable optofluidic devices

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The emerging field of optofluidics provides exciting opportunities for the realization of tunable optofluidic devices (TODs) using a large variety of physical mechanisms. This is because microfluidics is a promising technology for achieving a high degree of tunability—a capability that is not available in many of the current optical devices. In addition, microfluidics holds a great potential for rapid prototyping, miniaturization and integration. TODs already find commercial applications in various fields such as display and imaging, and are expected to become a key player in future optical systems for biology, medicine, communication and information processing. We review the recent progress in the field and discuss potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. More information can be found at Varioptic web site: http://www.varioptic.com.

  2. For more information see Liquavista web site: http://www.liquavista.com.

References

  • Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159

    Article  Google Scholar 

  • Berreman DW (1980) US Patent No. 4,190,330

  • Berry S, Kedzierski J, Abedian B (2006) Low voltage electrowetting using thin fluoroploymer films. J Colloid Interface Sci 303:517

    Article  Google Scholar 

  • Bilenberg B, Rasmussen T, Balslev S, Kristensen A (2006) Real-time tunability of chip-based light source enabled by micro-fluidic mixing. J Appl Phys 99:023102

    Article  Google Scholar 

  • Brown M, Vestad T, Oakey J, Marr DWM (2006) Optical waveguides via viscosity-mismatched microfluidic flows. Appl Phys Lett 88:134109

    Article  Google Scholar 

  • Campbell K, Groisman A, Levy U, Pang L, Mookherjea S, Psaltis D, Fainman Y (2004) A microfluidic 2 × 2 optical switch. Appl Phys Lett 85:6119

    Article  Google Scholar 

  • Campbell K, Levy U, Fainman Y, Groisman A (2006) Pressure-driven devices with lithographically fabricated composite epoxy-elastomer membranes. Appl Phys Lett 89:154105

    Article  Google Scholar 

  • Chiou PY, Chang Z, Wu MC (2003) Pico liter droplet manipulation based on a novel continuous opto- electrowetting mechanism. In: Proceedings IEEE twelfth international conference on solid-state sensors, actuators and microsystems (Transducers '03), pp 557–562

  • Chronis N, Liu GL, Jeong KH, Lee LP (2003) Tunable liquid-filled microlens array integrated with microfluidic network. Opt Express 11:2370

    Article  Google Scholar 

  • Commander LG, Day SE, Selviah DR (2000) Variable focal length microlenses. Opt Commun 177:157

    Article  Google Scholar 

  • Domachuk P, Cronin-Golomb M, Eggleton BJ, Mutzenich S, Rosengarten G, Mitchell A (2005) Application of optical trapping to beam manipulation in optofluidics. Opt Express 13:7265

    Article  Google Scholar 

  • Egatz-Gómez A, Melle S, García AA, Lindsay SA, Márquez M, Domínguez-García P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89:129902

    Article  Google Scholar 

  • Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59

    Article  Google Scholar 

  • Galas JC, Torres J, Belotti M, Kou Q, Chen Y (2005) Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl Phys Lett 86:264101

    Article  Google Scholar 

  • Garstecki P, Fischbach MA, Whitesides GM (2005) Design for mixing using bubbles in branched microfluidic channels. Appl Phys Lett 86:244108

    Article  Google Scholar 

  • Gersborg-Hansen M, Balslev S, Mortensen NA, A. Kristensen A (2005) A coupled cavity micro fluidic dye ring laser. Microelectro Eng 78–79:185

    Article  Google Scholar 

  • Gray S (1697) A letter from Mr. Stephen Gray, from Canterbury, May the 12th 1697, concerning making water subservient to the viewing both near, distant objects, with the description of a natural reflecting microscope. Philos Trans (1683–1775) 19:539

    Article  Google Scholar 

  • Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383

    Article  Google Scholar 

  • Heikenfeld J, Steckl AJ (2005a) High-transmission electrowetting light valves. Appl Phys Lett 86:151121

    Article  Google Scholar 

  • Heikenfeld J, Steckl AJ (2005b) Intense switchable fluorescence in light wave coupled electrowetting devices. Appl Phys Lett 86:011105

    Article  Google Scholar 

  • Hsieh J, Mach P, Cattaneo F, Yang S, Krupenkine T, Baldwin K, Rogers JA (2003) Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels. IEEE Photonics Technol Lett 15:81

    Article  Google Scholar 

  • Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311

    Article  Google Scholar 

  • Knollman GC, Bellin JLS, Weaver JL (1971) Variable-focus liquid filled hydroacoustic lens. J Acoust Soc Am 49:253

    Article  Google Scholar 

  • Krogmann F, Mönch W, Zappe H (2006) A MEMS-based variable micro-lens system. J Opt A Pure Appl Opt 8:330

    Article  Google Scholar 

  • Krupenkin T, Yang S, Mach P (2003) Tunable liquid microlens. Appl Phys Lett 82:316

    Article  Google Scholar 

  • Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:35

    Article  Google Scholar 

  • Levy U, Campbell K, Groisman A, Mookherjea S, Fainman Y (2006) On-chip microfluidic tuning of an optical microring resonator. Appl Phys Lett 88:111107

    Article  Google Scholar 

  • Li Z, Zhang Z, Scherer A, Psaltis D (2006) Mechanically tunable optofluidic distributed feedback dye laser. Opt Express 14:10494

    Article  Google Scholar 

  • Mach P, Krupenkin T, Yang S, Rogers JA (2002a) Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl Phys Lett 81:202

    Article  Google Scholar 

  • Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002b) Tunable microfluidic optical fiber. Appl Phys Lett 80:4294

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nature Photonics 1:106

    Article  Google Scholar 

  • Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:705

    Article  Google Scholar 

  • Mugele F, Baret JC, Steinhauser D (2006) Microfluidic mixing through electrowetting-induced droplet oscillations. Appl Phys Lett 88:204106

    Article  Google Scholar 

  • Naumov AF, Loktev MY, Guralnik IR, Vdovin G (1998) Liquid-crystal adaptive lenses with modal control. Opt Lett 23:992

    Google Scholar 

  • Pang L, Levy U, Campbell K, Groisman A, Fainman Y (2005) A set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. Opt Express 13:9003

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381

    Article  Google Scholar 

  • Ren H, Wu JR, Fan YH, Lin YH, Wu ST (2005) Hermaphroditic liquid-crystal microlens. Opt Lett 30:376

    Article  Google Scholar 

  • Ren H, Fox D, Anderson PA, Wu B, Wu ST (2006) Tunable-focus liquid lens controlled using a servo motor. Opt Express 14:8031

    Article  Google Scholar 

  • Sato S (1979) Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys 18:1679

    Article  Google Scholar 

  • Smith NR, Abeysinghe DC, Haus JW, Heikenfeld J (2006) Agile wide-angle beam steering with electrowetting microprisms. Opt Express 14:6557

    Article  Google Scholar 

  • Tang SKY, Mayers BT, Vezenov DV, Whitesides GM (2006) Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl Phys Lett 88:061112

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113

    Article  Google Scholar 

  • Wan Z, Zeng H, Feinerman A (2006) Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets. Appl Phys Lett 89:201107

    Article  Google Scholar 

  • Werber A, Zappe H (2005) Tunable microfluidic microlenses. Appl Opt 44:3238

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368

    Article  Google Scholar 

  • Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101:12434

    Article  Google Scholar 

  • Wright BM (1968) UK Patent No. 1,209,234

  • Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153

    Article  Google Scholar 

  • Zhang DY, Lien V, Berdichevsky Y, Choi J, Lo YH (2003) Fluidic adaptive lens with high focal length tunability. Appl Phys Lett 82:3171

    Article  Google Scholar 

  • Zhang DY, Justis N, Lo YH (2004a) Fluidic adaptive lens of transformable lens type. Appl Phys Lett 84:4194

    Article  Google Scholar 

  • Zhang DY, Justis N, Lien N, Berdichevsky Y, Lo YH (2004b) High-performance fluidic adaptive lenses. Appl Opt 43:783

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, U., Shamai, R. Tunable optofluidic devices. Microfluid Nanofluid 4, 97–105 (2008). https://doi.org/10.1007/s10404-007-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0216-x

Keywords

Navigation