Skip to main content
Log in

Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer–Lambert–Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Psaltis D, Quake SR, Yang CH (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofl uidics: a new river of light. Nat Photon 1:106–114

    Article  Google Scholar 

  • Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31(1):59–61

    Article  Google Scholar 

  • Diehl L, Lee BG, Behroozi P, Lončar M, Belkin MA, Capasso F, Aellen T, Hofstetter D, Beck M, Faist J (2006) Microfluidic tuning of distributed feedback quantum cascade lasers. Opt Express 14(24):11660–11667

    Article  Google Scholar 

  • Levy U, Campbell K, Groisman A, Mookherjea S, Fainman Y (2006) On-chip microfluidic tuning of an optical microring resonator. Appl Phys Lett 88(11):111107

    Article  Google Scholar 

  • Gersborg-Hansen M, Kristensen A (2007) Tunability of optofluidic distributed feedback dye lasers. Opt Express 15(1):137–142

    Article  Google Scholar 

  • Verpoorte E (2003) Chip vision—optics for microchips. Lab Chip 3(3):42N–52N

    Article  Google Scholar 

  • Mogensen KB, Klank H, Kutter JP (2004) Recent developments in detection for microfluidic systems. Electrophoresis 25(21–22):3498–3512

    Article  Google Scholar 

  • Balslev S, Jørgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6(2):213–217

    Article  Google Scholar 

  • Choi CJ, Cunningham BT (2006) Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels. Lab Chip 6(10):1373–1380

    Article  Google Scholar 

  • Skoog DA, West DM, Holler FJ (1997) Fundamentals of analytical chemistry. Saunders College Publishing, New York

    Google Scholar 

  • Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442(7101):374–380

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Mogensen KB, El-Ali J, Wolff A, Kutter JP (2003) Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. Appl Opt 42(19):4072–4079

    Article  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  Google Scholar 

  • Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Sakoda K (2005) Optical properties of photonic crystals. Volume 80 of springer series in optical sciences, 2nd edn. Springer, Berlin

    Google Scholar 

  • Samakkulam K, Sulkin J, Giannopoulos A, Choquette KD (2006) Micro-fluidic photonic crystal vertical cavity surface emitting laser. Electron Lett 42(14):809–811

    Article  Google Scholar 

  • Lončar M, Scherer A, Qiu YM (2003) Photonic crystal laser sources for chemical detection. Appl Phys Lett 82(26):4648–4650

    Article  Google Scholar 

  • Topol’ančik J, Bhattacharya P, Sabarinathan J, Yu PC (2003) Fluid detection with photonic crystal-based multichannel waveguides. Appl Phys Lett 82(8):1143–1145

    Article  Google Scholar 

  • Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095

    Article  Google Scholar 

  • Adams ML, Lončar M, Scherer A, Qiu YM (2005) Microfluidic integration of porous photonic crystal nanolasers for chemical sensing. IEEE J Sel Areas Commun 23(7):1348–1354

    Article  Google Scholar 

  • Chakravarty S, Topol’ančik J, Bhattacharya P, Chakrabarti S, Kang Y, Meyerhoff ME (2005) Ion detection with photonic crystal microcavities. Opt Lett 30(19):2578–2580

    Article  Google Scholar 

  • Hasek T, Kurt H, Citrin DS, Koch M (2006) Photonic crystals for fluid sensing in the subterahertz range. Appl Phys Lett 89(17):173508

    Article  Google Scholar 

  • Skivesen N, Têtu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt Express 15(6):3169–3176

    Article  Google Scholar 

  • Lee M, Fauchet PM (2007) Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt Express 15(8):4530–4535

    Article  Google Scholar 

  • Sharkawy A, Pustai D, Shi SY, Prather DW (2005) Modulating dispersion properties of low index photonic crystal structures using microfluidics. Opt Express 13(8):2814–2827

    Article  Google Scholar 

  • Kurt H, Citrin DS (2005a) Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region. Appl Phys Lett 87(24):241119

    Article  Google Scholar 

  • Kurt H, Citrin DS (2005b) Photonic crystals for biochemical sensing in the terahertz region. Appl Phys Lett 87(4):041108

    Article  Google Scholar 

  • Prasad T, Mittleman DM, Colvin VL (2006) A photonic crystal sensor based on the superprism effect. Opt Mater 29(1):56–59

    Article  Google Scholar 

  • Xiao S, Mortensen NA (2006) Highly dispersive photonic band-gap-edge optofluidic biosensors. J Eur Opt Soc Rapid Publ 1:06026

    Article  Google Scholar 

  • Mortensen NA, Ejsing S, Xiao S (2006) Liquid-infiltrated photonic crystals: ohmic dissipation and broadening of modes. J Eur Opt Soc Rapid Publ 1:06032

    Article  Google Scholar 

  • Mortensen NA, Xiao S (2007) Slow-light enhancement of Beer–Lambert–Bouguer absorption. Appl Phys Lett 90:141108

    Article  Google Scholar 

  • Xiao S, Mortensen NA (2007) Proposal of highly sensitive optofluidic biosensors based on dispersive photonic crystal waveguides. J Opt A Pure Appl Opt 9 [arXiv:physics/0703063] (in press)

  • Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002) Tunable microfluidic optical fiber. Appl Phys Lett 80(23):4294–4296

    Article  Google Scholar 

  • Domachuk P, Nguyen HC, Eggleton BJ (2004) Transverse probed microfluidic switchable photonic crystal fiber devices. IEEE Photon Technol Lett 16(8):1900–1902

    Article  Google Scholar 

  • Domachuk P, Nguyen HC, Eggleton BJ, Straub M, Gu M (2004) Microfluidic tunable photonic band-gap device. Appl Phys Lett 84(11):1838–1840

    Article  Google Scholar 

  • Rindorf L, Høiby PE, Jensen JB, Pedersen LH, Bang O, Geschke O (2006) Towards biochips using microstructured optical fiber sensors. Anal Bioanal Chem 385(8):1370–1375

    Article  Google Scholar 

  • Yablonovitch E (1999) Optics—liquid versus photonic crystals. Nature 401(6753):539–541

    Article  Google Scholar 

  • Busch K, John S (1999) Liquid–crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys Rev Lett 83(5):967–970

    Article  Google Scholar 

  • Larsen TT, Bjarklev A, Hermann DS, Broeng J (2003) Optical devices based on liquid crystal photonic bandgap fibres. Opt Express 11(20):2589–2596

    Article  Google Scholar 

  • Johnson SG, Joannopoulos JD (2001) Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 8(3):173–190

    Article  Google Scholar 

  • Bruus H (2007) Theoretical microfluidics, 1st edn. Oxford University Press, Oxford (in press)

  • Mortensen NA, Olesen LH, Belmon L, Bruus H (2005) Electrohydrodynamics of binary electrolytes driven by modulated surface potentials. Phys Rev E 71(5):056306

    Article  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sigalas MM, Soukoulis CM, Chan CT, Turner D (1996) Localization of electromagnetic waves in two-dimensional disordered systems. Phys Rev B 53(13):8340–8348

    Article  Google Scholar 

  • Lidorikis E, Sigalas MM, Economou EN, Soukoulis CM (2000) Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials. Phys Rev B 61(20):13458–13464

    Article  Google Scholar 

  • Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21(7):453–455

    Article  Google Scholar 

  • Yoshie T, Vučković J, Scherer A, Chen H, Deppe D (2001) High quality two-dimensional photonic crystal slab cavities. Appl Phys Lett 79(26):4289–4291

    Article  Google Scholar 

  • Akahane Y, Asano T, Song BS, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961):944–947

    Article  Google Scholar 

  • Asano T, Song BS, Akahane Y, Noda S (2006) Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs. IEEE J Sel Top Quantum Electron 12(6):1123–1134

    Article  Google Scholar 

  • Tomljenovic-Hanic S, de Sterke CM, Steel MJ (2006) Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration. Opt Express 14(25):12451–12456

    Article  Google Scholar 

  • Azzouz H, Alkhafadiji L, Balslev S, Johansson J, Mortensen NA, Nilsson S, Kristensen A (2006) Levitated droplet dye laser. Opt Express 14(10):4374–4379

    Article  Google Scholar 

  • Hossein-Zadeh M, Vahala KJ (2006) Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium. Opt Express 14(22):10800–10810

    Article  Google Scholar 

  • Vahala KJ (2003) Optical microcavities. Nature 424(6950):839–846

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Kristensen, M. Gersborg-Hansen, J. P. Kutter, K. B. Mogensen, H. Bruus, and J. Lægsgaard for discussions. This work is financially supported by the Danish Council for Strategic Research through the Strategic Program for Young Researchers (grant no: 2117-05-0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Asger Mortensen.

Additional information

Invited paper for the “Optofluidics” special issue edited by Prof. David Erickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, N.A., Xiao, S. & Pedersen, J. Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications. Microfluid Nanofluid 4, 117–127 (2008). https://doi.org/10.1007/s10404-007-0203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0203-2

Keywords

Navigation