Skip to main content

Advertisement

Log in

Characteristic correlations of the structure-function relationship in different glaucomatous disc types

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of the optic disc type on the overall and regional correlation between structure and function in open angle glaucoma (OAG).

Methods

We divided 144 eyes of 144 patients with OAG into four groups according to Nicolela et al.’s classification of optic disc type: focal ischemic (FI), myopic glaucomatous (MY), senile sclerotic (SS), and generalized enlargement (GE). We measured the circumpapillary retinal nerve fiber layer thickness (cpRNFLT) with the 3D OCT-2000 and the mean deviation (MD) with the Humphrey Field Analyzer in each group and determined the influence of the disc type on these parameters with the Spearman rank correlation.

Results

We found that cpRNFLT and MD were significantly correlated in the MY (r = 0.61, P < 0.001), GE (r = 0.62, P < 0.001), and SS groups (r = 0.52, P = 0.002), but not in the FI group (r = 0.25, P = 0.130). The region of the optic disc with the highest correlation coefficient between structure and function differed according to the disc type.

Conclusions

The correlation between cpRNFLT and MD varied according to the optic disc morphology in OAG. This suggests that different disc types have characteristic regional variations in the correlation between structure and function. The disc type should therefore be considered in investigations of the correlation between structure and function in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80:389–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.

    PubMed Central  PubMed  Google Scholar 

  3. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    Article  PubMed  Google Scholar 

  4. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13 (discussion 829–30).

    Article  PubMed  Google Scholar 

  5. Mardin CY, Junemann AG. The diagnostic value of optic nerve imaging in early glaucoma. Curr Opin Ophthalmol. 2001;12:100–4.

    Article  CAS  PubMed  Google Scholar 

  6. Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007;144:724–32.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Naithani P, Sihota R, Sony P, Dada T, Gupta V, Kondal D, et al. Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. Invest Ophthalmol Vis Sci. 2007;48:3138–45.

    Article  PubMed  Google Scholar 

  8. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004;122:827–37.

    Article  PubMed  Google Scholar 

  9. Kalaboukhova L, Fridhammar V, Lindblom B. Glaucoma follow-up by the Heidelberg retina tomograph: new graphical analysis of optic disc topography changes. Graefes Arch Clin Exp Ophthalmol. 2006;244:654–62.

    Article  PubMed  Google Scholar 

  10. Saarela V, Airaksinen PJ. Heidelberg retina tomograph parameters of the optic disc in eyes with progressive retinal nerve fibre layer defects. Acta Ophthalmol. 2008;86:603–8.

    Article  PubMed  Google Scholar 

  11. Brusini P. Monitoring glaucoma progression. Prog Brain Res. 2008;173:59–73.

    Article  PubMed  Google Scholar 

  12. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology. 1996;103:640–9.

    Article  CAS  PubMed  Google Scholar 

  13. Nicolela MT, McCormick TA, Drance SM, Ferrier SN, LeBlanc RP, Chauhan BC. Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology. 2003;110:2178–84.

    Article  PubMed  Google Scholar 

  14. Omodaka K, Nakazawa T, Otomo T, Nakamura M, Fuse N, Nishida K. Correlation between morphology of optic disc determined by Heidelberg retina tomograph II and visual function in eyes with open-angle glaucoma. Clin Ophthalmol. 2010;4:765–72.

    PubMed Central  PubMed  Google Scholar 

  15. Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 2003;135:513–20.

    Article  PubMed  Google Scholar 

  16. Anderson DR, Patella VM. Automated static perimetry. 2nd ed. St Louis: Mosby; 1999. p. 121–90.

    Google Scholar 

  17. Nakazawa T, Shimura M, Ryu M, Himori N, Nitta F, Omodaka K, et al. Progression of visual field defects in eyes with different optic disc appearances in patients with normal tension glaucoma. J Glaucoma. 2012;21:426–30.

    Article  PubMed  Google Scholar 

  18. Yokoyama Y, Aizawa N, Chiba N, Omodaka K, Nakamura M, Otomo T, et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–7.

    PubMed Central  PubMed  Google Scholar 

  19. Chiba N, Omodaka K, Yokoyama Y, Aizawa N, Tsuda S, Yasuda M, et al. Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disc type. Clin Ophthalmol. 2011;5:1549–56.

    PubMed Central  PubMed  Google Scholar 

  20. Nakazawa T, Fuse N, Omodaka K, Aizawa N, Kuwahara S, Nishida K. Different types of optic disc shape in patients with advanced open-angle glaucoma. Jpn J Ophthalmol. 2010;54:291–5.

    Article  PubMed  Google Scholar 

  21. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  Google Scholar 

  22. Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995;6:89–95.

    Article  CAS  PubMed  Google Scholar 

  23. Soliman MA, Van Den Berg TJ, Ismaeil AA, De Jong LA, De Smet MD. Retinal nerve fiber layer analysis: relationship between optical coherence tomography and red-free photography. Am J Ophthalmol. 2002;133:187–95.

    Article  PubMed  Google Scholar 

  24. Gardiner SK, Johnson CA, Cioffi GA. Evaluation of the structure-function relationship in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3712–7.

    Article  PubMed  Google Scholar 

  25. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.

    Article  CAS  PubMed  Google Scholar 

  26. Kamal DS, Garway-Heath DF, Hitchings RA, Fitzke FW. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol. 2000;84:993–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Parisi V, Manni G, Centofanti M, Gandolfi SA, Olzi D, Bucci MG. Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology. 2001;108:905–12.

    Article  CAS  PubMed  Google Scholar 

  28. Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.

    Article  PubMed  Google Scholar 

  29. Lamparter J, Russell RA, Schulze A, Schuff AC, Pfeiffer N, Hoffmann EM. Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci. 2012;53:7553–9.

    Article  CAS  PubMed  Google Scholar 

  30. Naghizadeh F, Garas A, Vargha P, Holló G. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry. J Glaucoma. 2014;23:11–8.

    Article  PubMed  Google Scholar 

  31. Asaoka R, Russell RA, Malik R, Crabb DP, Garway-Heath DF. A novel distribution of visual field test points to improve the correlation between structure-function measurements. Invest Ophthalmol Vis Sci. 2012;53:8396–404.

    Article  PubMed  Google Scholar 

  32. Shin HY, Park HY, Jung Y, Choi JA, Park CK. Glaucoma diagnostic accuracy of optical coherence tomography parameters in early glaucoma with different types of optic disc damage. Ophthalmology. 2014;121:1990–7.

    Article  PubMed  Google Scholar 

  33. Danesh-Meyer HV, Ku JY, Papchenko TL, Jayasundera T, Hsiang JC, Gamble GD. Regional correlation of structure and function in glaucoma, using the Disc Damage Likelihood Scale, Heidelberg retina tomograph, and visual fields. Ophthalmology. 2006;113:603–11.

    Article  PubMed  Google Scholar 

  34. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007;114:1046–52.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.

    Article  CAS  PubMed  Google Scholar 

  36. Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma. Arch Ophthalmol. 1993;111:62–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Yukihiro Shiga, Yu Yokoyama, and Satoru Tsuda for collecting the patient data used in this study and Mr. Tim Hilts for editing the manuscript. This study was supported in part by a JST grant from JSPS KAKENHI Grants-in-Aid for Scientific Research (B) (T.N., 26293372) and for Exploratory Research (T.N., 26670751) and by the JST Center for Revitalization Promotion.

Conflicts of interest

K. Omodaka, None; N. Takada, None; T. Yamaguchi, None; H. Takahashi, None; M. Araie, None; T. Nakazawa, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Nakazawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omodaka, K., Takada, N., Yamaguchi, T. et al. Characteristic correlations of the structure-function relationship in different glaucomatous disc types. Jpn J Ophthalmol 59, 223–229 (2015). https://doi.org/10.1007/s10384-015-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-015-0379-z

Keywords

Navigation