Skip to main content

Advertisement

Log in

Occult macular dystrophy

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Occult macular dystrophy (OMD) was first reported in 1989 as a hereditary macular disease without visible fundus abnormalities. Patients with OMD are characterized by a progressive decrease of visual acuity but have normal fundus and fluorescein angiograms with both the rod and cone components of the full-field electroretinograms (ERGs) essentially normal. However, the focal macular ERGs and multifocal ERGs are severely attenuated. These findings indicate that the retinal dysfunction is confined to the macula. Optical coherence tomography (OCT) has shown structural changes in the outer nuclear and/or photoreceptor layers. Genetic analyses of OMD pedigrees have identified dominant mutations in the RP1L1 gene. However, the same mutations were not detected in sporadic cases, suggesting that several independent mutations can lead to the OMD phenotype. The purpose of this paper is to review the history of OMD, the visual functions determined psychophysically, ERG findings, OCT characteristics and genetic findings in patients with OMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oguchi C. Ueber eine Abart von Hemeralopie. Acta Soc Ophthalmol Jpn. 1907;11:123–34 (in Japanese).

    Google Scholar 

  2. Takayasu M. A case with peculiar changes of the central retinal vessels. Acta Soc Ophthalmol Jpn. 1908;12:554 (in Japanese).

    Google Scholar 

  3. Harada E. Beitrag zur klinischen von nichteitriger Choroiditis (choroiditis diffusa acuta). Acta Soc Ophthalmol Jpn. 1926;30:356–78 (in Japanese).

    Google Scholar 

  4. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol. 1986;104:1013–20.

    Article  CAS  PubMed  Google Scholar 

  5. Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19:264–7.

    Article  CAS  PubMed  Google Scholar 

  6. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG, et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet. 2000;26:319–23.

    Article  CAS  PubMed  Google Scholar 

  7. Boycott KM, Pearce WG, Musarella MA, Weleber RG, Maybaum TA, Birch DG, et al. Evidence for genetic heterogeneity in X-linked congenital stationary night blindness. Am J Hum Genet. 1998;62:865–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pusch CM, Zeitz C, Brandau O, Pesch K, Achatz H, Feil S, et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet. 2000;26:324–7.

    Article  CAS  PubMed  Google Scholar 

  9. Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19:260–3.

    Article  CAS  PubMed  Google Scholar 

  10. Miyake Y. Cone dystrophy. In: Electrodiagnosis of retinal diseases. Tokyo: Springer-Verlag; 2006.

    Google Scholar 

  11. Miyake Y. Rod monochromacy. In: Electrodiagnosis of retinal diseases. Tokyo: Springer-Verlag; 2006.

  12. Terasaki H, Miyake Y. Japanese family with blue cone monochromatism. Jpn J Ophthalmol. 1992;36:132–41.

    CAS  PubMed  Google Scholar 

  13. Miyake Y, Ichikawa K, Shiose Y, Kawase Y. Hereditary macular dystrophy without visible fundus abnormality. Am J Ophthalmol. 1989;108:292–9.

    Article  CAS  PubMed  Google Scholar 

  14. Miyake Y, Horiguchi M, Tomita N, Kondo M, Tanikawa A, Takahashi H, et al. Occult macular dystrophy. Am J Ophthalmol. 1996;122:644–53.

    Article  CAS  PubMed  Google Scholar 

  15. Miyake Y. Occult macular dystrophy. In: Electrodiagnosis of retinal diseases. Tokyo: Springer-Verlag; 2006.

  16. Miyake Y. Studies of local macular ERG. Nihon Ganka Gakkai Zasshi. 1988;92:1419–49.

    CAS  PubMed  Google Scholar 

  17. Miyake Y, Awaya S. Stimulus deprivation amblyopia. Simultaneous recording of local macular electroretinogram and visual evoked response. Arch Ophthalmol. 1984;102:998–1003.

    Article  CAS  PubMed  Google Scholar 

  18. Miyake Y, Shiroyama N, Horiguchi M, Ota I. Asymmetry of focal ERG in human macular region. Invest Ophthalmol Vis Sci. 1989;30:1743–9.

    CAS  PubMed  Google Scholar 

  19. Miyake Y, Shiroyama N, Ota I, Horiguchi M. Oscillatory potentials in electroretinograms of the human macular region. Invest Ophthalmol Vis Sci. 1988;29:1631–5.

    CAS  PubMed  Google Scholar 

  20. Miyake Y, Yanagida K, Kondo M, Ota I. Subjective scotometry and recording local macular electroretinogram and visual evoked response. Jpn J Ophthalmol. 1981;25:438–48.

    Google Scholar 

  21. Sutter EE, Tran D. The field topography of ERG components in man I. The photopic luminance response. Vision Res. 1992;32:433–46.

    Article  CAS  PubMed  Google Scholar 

  22. Fujii S, Escano MF, Ishibashi K, Matsuo H, Yamamoto M. Multifocal electroretinography in patients with occult macular dystrophy. Br J Ophthalmol. 1999;83:879–80.

    Article  CAS  PubMed  Google Scholar 

  23. Piao CH, Kondo M, Tanikawa A, Terasaki H, Miyake Y. Multifocal electroretinogram in occult macular dystrophy. Invest Ophthalmol Vis Sci. 2000;41:513–7.

    CAS  PubMed  Google Scholar 

  24. Wildberger H, Niemeyer G, Junghardt A. Multifocal electroretinogram (mfERG) in a family with occult macular dystrophy (OMD). Klin Monatsbl Augenheilkd. 2003;220:111–5.

    Article  PubMed  Google Scholar 

  25. Kondo M, Ito Y, Ueno S, Piao CH, Terasaki H, Miyake Y. Foveal thickness in occult macular dystrophy. Am J Ophthalmol. 2003;135:725–8.

    Article  PubMed  Google Scholar 

  26. Brockhurst RJ, Sandberg MA. Optical coherence tomography findings in occult macular dystrophy. Am J Ophthalmol. 2007;143:516–8.

    Article  PubMed  Google Scholar 

  27. Koizumi H, Maguire JI, Spaide RF. Spectral domain optical coherence tomographic findings of occult macular dystrophy. Ophthalmic Surg Lasers Imaging. 2009;40:174–6.

    Article  PubMed  Google Scholar 

  28. Lubinski W, Goslawski W, Penkala K, Drobek-Slowik M, Karczewicz D. A 43-year-old man with reduced visual acuity and normal fundus: occult macular dystrophy–case report. Doc Ophthalmol. 2008;116:111–8.

    Article  PubMed  Google Scholar 

  29. Park SJ, Woo SJ, Park KH, Hwang JM, Chung H. Morphologic photoreceptor abnormality in occult macular dystrophy on spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:3673–9.

    Article  PubMed  Google Scholar 

  30. Tsunoda K, Usui T, Hatase T, Yamai S, Fujinami K, Hanazono G, et al. Clinical characteristics of occult macular dystrophy in family with mutation of Rp1l1 gene. Retina-J Retinal Vitreous Dis. 2012;32:1135–47.

    CAS  Google Scholar 

  31. Akahori M, Tsunoda K, Miyake Y, Fukuda Y, Ishiura H, Tsuji S, et al. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am J Hum Genet. 2010;87:424–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:1124–36.

    CAS  PubMed  Google Scholar 

  33. Fujinami K, Tsunoda K, Hanazono G, Shinoda K, Ohde H, Miyake Y. Fundus autofluorescence in autosomal dominant occult macular dystrophy. Arch Ophthalmol. 2011;129:597–602.

    Article  PubMed  Google Scholar 

  34. Sieving PA. Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc. 1993;91:701–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Jacobson SG, Voigt WJ, Parel JM, Apathy PP, Nghiem-Phu L, Myers SW, et al. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology. 1986;93:1604–11.

    Article  CAS  PubMed  Google Scholar 

  36. Srinivasan VJ, Adler DC, Chen YL, Gorczynska I, Huber R, Duker JS, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49:5103–10.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Anderson DH, Fisher SK, Steinberg RH. Mammalian cones—disk shedding, phagocytosis, and renewal. Invest Ophthalmol Vis Sci. 1978;17:117–33.

    CAS  PubMed  Google Scholar 

  38. Fernandez EJ, Hermann B, Povazay B, Unterhuber A, Sattmann H, Hofer B, et al. Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express. 2008;16:11083–94.

    Article  PubMed  Google Scholar 

  39. Kabuto T, Takahashi H, Goto-Fukuura Y, Igarashi T, Akahori M, Kameya S, et al. A new mutation in the RP1L1 gene in a patient with occult macular dystrophy associated with a depolarizing pattern of focal macular electroretinograms. Mol Vis. 2012;18:1031–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Hayashi T, Gekka T, Kozaki K, Ohkuma Y, Tanaka I, Yamada H, et al. Autosomal dominant occult macular dystrophy with an RP1L1 mutation (R45W). Optom Vis Sci: Off Publ Am Acad Optom. 2012;89:684–91.

    Article  Google Scholar 

  41. Ahn SJ, Cho SI, Ahn J, Park SS, Park KH, Woo SJ. Clinical and genetic characteristics of Korean occult macular dystrophy patients. Invest Ophthalmol Vis Sci. 2013;54:4856–63.

    Article  PubMed  Google Scholar 

  42. Davidson AE, Sergouniotis PI, Mackay DS, Wright GA, Waseem NH, Michaelides M, et al. RP1L1 variants are associated with a spectrum of inherited retinal diseases including retinitis pigmentosa and occult macular dystrophy. Hum Mutat. 2013;34:506–14.

    Article  CAS  PubMed  Google Scholar 

  43. Conte I, Lestingi M, den Hollander A, Alfano G, Ziviello C, Pugliese M, et al. Identification and characterisation of the retinitis pigmentosa 1-like1 gene (RP1L1): a novel candidate for retinal degenerations. Eur J Human Genet : EJHG. 2003;11:155–62.

    Article  CAS  PubMed  Google Scholar 

  44. Bowne SJ, Daiger SP, Malone KA, Heckenlively JR, Kennan A, Humphries P, et al. Characterization of RP1L1, a highly polymorphic paralog of the retinitis pigmentosa 1 (RP1) gene. Mol Vis. 2003;9:129–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Pierce EA, Quinn T, Meehan T, McGee TL, Berson EL, Dryja TP. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet. 1999;22:248–54.

    Article  CAS  PubMed  Google Scholar 

  46. Sullivan LS, Heckenlively JR, Bowne SJ, Zuo J, Hide WA, Gal A, et al. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet. 1999;22:255–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jacobson SG, Cideciyan AV, Iannaccone A, Weleber RG, Fishman GA, Maguire AM, et al. Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000;41:1898–908.

    CAS  PubMed  Google Scholar 

  48. Yamashita T, Liu J, Gao J, LeNoue S, Wang C, Kaminoh J, et al. Essential and synergistic roles of RP1 and RP1L1 in rod photoreceptor axoneme and retinitis pigmentosa. J Neurosci. 2009;29:9748–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Miyake Y. Establishment of the concept of new clinical entities—complete and incomplete form of congenital stationary night blindness. Nihon Ganka Gakkai Zasshi. 2002;106:737–55 (discussion 56).

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by (1) research grants from the Ministry of Health, Labor and Welfare, Japan and (2) Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Japan. This manuscript was edited by Prof. Duco Hamasaki of the Bascom Palmer Institute.

Conflicts of interest

Y. Miyake, None; K. Tsunoda, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Tsunoda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyake, Y., Tsunoda, K. Occult macular dystrophy. Jpn J Ophthalmol 59, 71–80 (2015). https://doi.org/10.1007/s10384-015-0371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-015-0371-7

Keywords

Navigation