Skip to main content

Advertisement

Log in

Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the corneal biomechanical properties of eyes that have undergone penetrating keratoplasty (PK), deep anterior lamellar keratoplasty (DALK), and Descemet stripping automated endothelial keratoplasty (DSAEK).

Methods

This case–control study comprised 20 post-PK eyes, 14 post-DALK eyes, 15 post-DSAEK eyes, and 50 normal control eyes. A dynamic Scheimpflug analyzer (the Corvis ST) was used to evaluate the corneal biomechanical properties including deformation amplitude (DA) and radius at the highest concavity (R hc).

Results

In post-PK eyes, the mean DA was 1.20 ± 0.13 mm, which was significantly higher than those of the control eyes (1.07 ± 0.09) and the post-DSAEK eyes (1.08 ± 0.12). The DA (1.18 ± 0.18) in the post-DALK eyes was significantly higher than in the control eyes. The R hc in the post-PK (6.34 ± 0.37 mm), -DALK (6.04 ± 1.22), and -DSAEK (6.44 ± 0.58) eyes was significantly smaller than in the control eyes (7.57 ± 0.78).

Conclusions

The dynamic Scheimpflug analyzer provides a method to obtain new biomechanical information on the cornea such as the DA and R hc, and these parameters differed among eyes that had undergone 3 different types of corneal surgery. Abnormalities in these parameters after the different corneal transplantation techniques may indicate larger deviations in the stress–strain reaction of the cornea and more uncertainty in the intraocular pressure measurements than in normal eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Archila EA. Deep lamellar keratoplasty dissection of host tissue with intrastromal air injection. Cornea. 1984–1985;3:217–8.

    Google Scholar 

  2. Sugita J, Kondo J. Deep lamellar keratoplasty with complete removal of pathological stroma for vision improvement. Br J Ophthalmol. 1997;81:184–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Anwar M, Teichmann KD. Big-bubble technique to bare Descemetʼs membrane in anterior lamellar keratoplasty. J Cataract Refract Surg. 2002;28:398–403.

    Article  PubMed  Google Scholar 

  4. Melles GR, Eggink FA, Lander F, Pels E, Rietveld FJ, Beekhuis WH, et al. A surgical technique for posterior lamellar keratoplasty. Cornea. 1998;17:618–26.

    Article  CAS  PubMed  Google Scholar 

  5. Terry MA, Ousley PJ. Replacing the endothelium without corneal surface incisions or sutures: the first United States clinical series using the deep lamellar endothelial keratoplasty procedure. Ophthalmology. 2003;110:755–64.

    Article  PubMed  Google Scholar 

  6. Price FW Jr, Price MO. Descemet’s stripping with endothelial keratoplasty in 200 eyes: early challenges and techniques to enhance donor adherence. J Cataract Refract Surg. 2006;32:411–8.

    Article  PubMed  Google Scholar 

  7. Lee WB, Jacobs DS, Musch DC, Kaufman SC, Reinhart WJ, Shtein RM. Descemet’s stripping endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2009;116:1818–30.

    Article  PubMed  Google Scholar 

  8. Melles GR, Ong TS, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25:987–90.

    Article  PubMed  Google Scholar 

  9. Price MO, Giebel AW, Fairchild KM, Price FW Jr. Descemetʼs membrane endothelial keratoplasty: prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology. 2009;116:2361–8.

    Article  PubMed  Google Scholar 

  10. Koh S, Maeda N, Nakagawa T, Higashiura R, Saika M, Mihashi T, et al. Characteristic higher-order aberrations of the anterior and posterior corneal surfaces in 3 corneal transplantation techniques. Am J Ophthalmol. 2012;153:284–90.

    Article  PubMed  Google Scholar 

  11. Rudolph M, Laaser K, Bachmann BO, Cursiefen C, Epstein D, Kruse FE. Corneal higher-order aberrations after Descemetʼs membrane endothelial keratoplasty. Ophthalmology. 2012;119:528–35.

    Article  PubMed  Google Scholar 

  12. Kawashima M, Kawakita T, Shimmura S, Tsubota K, Shimazaki J. Characteristics of traumatic globe rupture after keratoplasty. Ophthalmology. 2009;116:2072–6.

    Article  PubMed  Google Scholar 

  13. Sari ES, Koytak A, Kubaloglu A, Culfa S, Erol MK, Ermis SS, et al. Traumatic wound dehiscence after deep anterior lamellar keratoplasty. Am J Ophthalmol. 2013;156:767–72.

    Article  PubMed  Google Scholar 

  14. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.

    Article  PubMed  Google Scholar 

  15. Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ, Pepose JS. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol. 2007;143:39–47.

    Article  PubMed  Google Scholar 

  16. Fontes BM, Ambrósio R Jr, Jardim D, Velarde GC, Nosé W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117:673–9.

    Article  PubMed  Google Scholar 

  17. Vinciguerra P, Albè E, Mahmoud AM, Trazza S, Hafezi F, Roberts CJ. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. J Refract Surg. 2010;26:669–76.

    Article  PubMed  Google Scholar 

  18. Yenerel NM, Kucumen RB, Gorgun E. Changes in corneal biomechanics in patients with keratoconus after penetrating keratoplasty. Cornea. 2010;29:1247–51.

    Article  PubMed  Google Scholar 

  19. Jafarinasab MR, Feizi S, Javadi MA, Hashemloo A. Graft biomechanical properties after penetrating keratoplasty versus deep anterior lamellar keratoplasty. Curr Eye Res. 2011;36:417–21.

    Article  PubMed  Google Scholar 

  20. Hosny M, Hassaballa MA, Shalaby A. Changes in corneal biomechanics following different keratoplasty techniques. Clin Ophthalmol. 2011;5:767–70.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Acar BT, Akdemir MO, Acar S. Corneal biomechanical properties in eyes with no previous surgery, with previous penetrating keratoplasty and with deep anterior lamellar keratoplasty. Jpn J Ophthalmol. 2013;57:85–9.

    Article  PubMed  Google Scholar 

  22. Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90:e1–8.

    Article  PubMed  Google Scholar 

  23. Hong J, Xu J, Wei A, Deng SX, Cui X, Yu X, et al. A new tonometer—the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci. 2013;54:659–65.

    Article  PubMed  Google Scholar 

  24. Faria-Correia F, Ramos I, Valbon B, Luz A, Roberts CJ, Ambrósio R Jr. Scheimpflug-based tomography and biomechanical assessment in pressure-induced stromal keratopathy. J Refract Surg. 2013;29:356–8.

    Article  PubMed  Google Scholar 

  25. Nemeth G, Hassan Z, Csutak A, Szalai E, Berta A, Modis L Jr. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29:558–63.

    Article  PubMed  Google Scholar 

  26. Reznicek L, Muth D, Kampik A, Neubauer AS, Hirneiss C. Evaluation of a novel Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma. Br J Ophthalmol. 2013;97:1410–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Publication of this article was supported in part by a Grant-in-Aid for Scientific Research (no. 24592669; to Naoyuki Maeda) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The authors would like to thank Duco Hamasaki, PhD, for the English language review.

Conflicts of interest

N. Maeda, Research Grant (Topcon), Instrument (Corvis® ST: Oculus); R. Ueki, None; M. Fuchihata, None; H. Fujimoto, None; S. Koh, None; K. Nishida, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Maeda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10 kb)

10384_2014_344_MOESM2_ESM.mpg

Supplementary material 2: Video 1. This video indicates the difference in dynamic air pulse-induced changes in corneal shape between the normal eye (left) and the eye following penetrating keratoplasty (right) shown in Figure 1 (MPG 1,912 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, N., Ueki, R., Fuchihata, M. et al. Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer. Jpn J Ophthalmol 58, 483–489 (2014). https://doi.org/10.1007/s10384-014-0344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-014-0344-2

Keywords

Navigation