Skip to main content

Advertisement

Log in

Vitreous inflammatory factors in macular edema with central retinal vein occlusion

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the correlation of soluble intercellular adhesion molecule 1 (sICAM-1) and vascular endothelial growth factor (VEGF) with macular edema in patients with central retinal vein occlusion (CRVO).

Methods

Twenty-nine patients who had CRVO with macular edema and 16 patients with non-ischemic ocular diseases (control group) participated. Retinal ischemia was evaluated by measuring the area of capillary non-perfusion with fluorescein angiography and the public domain Scion Image program. Macular edema was examined by optical coherence tomography. Vitreous samples were obtained during pars plana vitrectomy. VEGF and sICAM-1 levels in vitreous fluid and plasma were determined by enzyme-linked immunosorbent assay.

Results

The median vitreous levels of VEGF and sICAM-1 were significantly higher in the CRVO patients than in the control group [366 vs. 15.6 pg/ml (P < 0.001) and 20.5 vs. 5.0 ng/ml (P < 0.001), respectively]. Vitreous levels of both VEGF and sICAM-1 were also significantly higher in the CRVO patients who had retinal ischemia than in those without ischemia (P < 0.001 and P = 0.011, respectively). Vitreous levels of VEGF and sICAM-1 were also significantly correlated with the severity of macular edema (P = 0.004 and P = 0.012, respectively).

Conclusions

VEGF and sICAM-1 may both increase vascular permeability in CRVO patients with macular edema, with sICAM-1 acting together with and/or via VEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zegarra H, Gutman FA, Conforto J. The natural course of central retinal vein occlusion. Ophthalmology. 1979;86:1931–42.

    Article  CAS  PubMed  Google Scholar 

  2. Hayreh SS. Classification of central retinal vein occlusion. Ophthalmology. 1983;90:458–74.

    Article  CAS  PubMed  Google Scholar 

  3. Gutman FA. Macular edema secondary to occlusion of the retinal veins. Surv Ophthalmol. 1984;28(Suppl):462–70.

    Article  PubMed  Google Scholar 

  4. Noma H, Funatsu H, Mimura T, Harino S, Hori S. Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Ophthalmology. 2009;116:87–93.

    Article  PubMed  Google Scholar 

  5. Noma H, Funatsu H, Mimura T, Harino S, Hori S. Aqueous humor levels of vasoactive molecules correlate with vitreous levels and macular edema in central retinal vein occlusion. Eur J Ophthalmol. 2010;20:402–9.

    Article  PubMed  Google Scholar 

  6. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vinores SA, Derevjanik NL, Ozaki H, Okamoto N, Campochiaro PA. Cellular mechanisms of blood-retinal barrier dysfunction in macular edema. Doc Ophthalmol. 1999;97:217–28.

    Article  CAS  PubMed  Google Scholar 

  8. Gardner TW, Antonetti DA, Barber AJ, Lieth E, Tarbell JA. The molecular structure and function of the inner blood-retinal barrier. Penn State Retina Research Group. Doc Ophthalmol. 1999;97:229–37.

    Article  CAS  PubMed  Google Scholar 

  9. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol. 1995;113:1538–44.

    Article  CAS  PubMed  Google Scholar 

  10. Nishijima K, Kiryu J, Tsujikawa A, Honjo M, Nonaka A, Yamashiro K, et al. Inhibitory effects of antithrombin III on interactions between blood cells and endothelial cells during retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2003;44:332–41.

    Article  PubMed  Google Scholar 

  11. Lu M, Perez VL, Ma N, Miyamoto K, Peng HB, Liao JK, et al. VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci. 1999;40:1808–12.

    CAS  PubMed  Google Scholar 

  12. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005;112:806–16.

    Article  PubMed  Google Scholar 

  13. Tachi N, Hashimoto Y, Ogino N. Vitrectomy for macular edema combined with retinal vein occlusion. Doc Ophthalmol. 1999;97:465–9.

    Article  CAS  PubMed  Google Scholar 

  14. Leizaola-Fernandez C, Suarez-Tata L, Quiroz-Mercado H, Colina-Luquez J, Fromow-Guerra J, Jimenez-Sierra JM, et al. Vitrectomy with complete posterior hyaloid removal for ischemic central retinal vein occlusion: series of cases. BMC Ophthalmol. 2005;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Furukawa M, Kumagai K, Ogino N, Uemura A, Larson E. Long-term visual outcomes of vitrectomy for cystoid macular edema due to nonischemic central retinal vein occlusion. Eur J Ophthalmol. 2006;16:841–6.

    Article  CAS  PubMed  Google Scholar 

  16. Noma H, Funatsu H, Mimura T, Harino S, Sone T, Hori S. Increase of vascular endothelial growth factor and interleukin-6 in the aqueous humour of patients with macular oedema and central retinal vein occlusion. Acta Ophthalmol. 2010;88:646–51.

    Article  CAS  PubMed  Google Scholar 

  17. Guidelines Subcommittee of the World Health Organization-International Society of Hypertension Mild Hypertension Liaison Committee. World Health Organization-International Society of Hypertension guidelines for the management of hypertension. J Hypertens. 1999;17:151–83.

    Google Scholar 

  18. Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T, et al. Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6. Am J Ophthalmol. 2005;140:256–61.

    Article  CAS  PubMed  Google Scholar 

  19. Noma H, Minamoto A, Funatsu H, Tsukamoto H, Nakano K, Yamashita H, et al. Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2006;244:309–15.

    Article  CAS  PubMed  Google Scholar 

  20. Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T, et al. Aqueous humour levels of cytokines are correlated to vitreous levels and severity of macular oedema in branch retinal vein occlusion. Eye. 2008;22:42–8.

    Article  CAS  PubMed  Google Scholar 

  21. The Central Vein Occlusion Study. Baseline and early natural history report. Arch Ophthalmol. 1993;111:1087–95.

    Article  Google Scholar 

  22. The Central Vein Occlusion Study Group M Report. Evaluation of grid pattern photocoagulation for macular edema in central vein occlusion. Ophthalmology. 1995;102:1425–33.

    Article  Google Scholar 

  23. The Central Vein Occlusion Study Group. Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol. 1997;115:486–91.

    Article  Google Scholar 

  24. Otani T, Kishi S. Tomographic assessment of vitreous surgery for diabetic macular edema. Am J Ophthalmol. 2000;129:487–94.

    Article  CAS  PubMed  Google Scholar 

  25. Nishiwaki A, Ueda T, Ugawa S, Shimada S, Ogura Y. Upregulation of P-selectin and intercellular adhesion molecule-1 after retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2003;44:4931–5.

    Article  PubMed  Google Scholar 

  26. Hirose F, Kiryu J, Miyamoto K, Nishijima K, Miyahara S, Katsuta H, et al. In vivo evaluation of retinal injury after transient ischemia in hypertensive rats. Hypertension. 2004;43:1098–102.

    Article  CAS  PubMed  Google Scholar 

  27. Elner SG, Elner VM, Pavilack MA, Todd RF, Mayo-Bond L, Franklin WA, et al. Modulation and function of intercellular adhesion molecule-1 (CD54) on human retinal pigment epithelial cells. Lab Invest. 1992;66:200–11.

    CAS  PubMed  Google Scholar 

  28. Gearing AJ, Newman W. Circulating adhesion molecules in disease. Immunol Today. 1993;14:506–12.

    Article  CAS  PubMed  Google Scholar 

  29. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep. 2009;61:22–32.

    Article  CAS  PubMed  Google Scholar 

  30. Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA. 1999;96:10836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsujikawa A, Ogura Y, Hiroshiba N, Miyamoto K, Kiryu J, Honda Y. In vivo evaluation of leukocyte dynamics in retinal ischemia reperfusion injury. Invest Ophthalmol Vis Sci. 1998;39:793–800.

    CAS  PubMed  Google Scholar 

  32. Chahal PS, Fallon TJ, Kohner EM. Measurement of blood-retinal barrier function in central retinal vein occlusion. Arch Ophthalmol. 1986;104:554–7.

    Article  CAS  PubMed  Google Scholar 

  33. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996;103:1820–8.

    Article  CAS  PubMed  Google Scholar 

  34. Iturralde D, Spaide RF, Meyerle CB, Klancnik JM, Yannuzzi LA, Fisher YL, et al. Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study. Retina. 2006;26:279–84.

    Article  PubMed  Google Scholar 

  35. Pai SA, Shetty R, Vijayan PB, Venkatasubramaniam G, Yadav NK, Shetty BK, et al. Clinical, anatomic, and electrophysiologic evaluation following intravitreal bevacizumab for macular edema in retinal vein occlusion. Am J Ophthalmol. 2007;143:601–6.

    Article  CAS  PubMed  Google Scholar 

  36. Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol. 2000;156:1733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ip MS, Scott IU, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 5. Arch Ophthalmol. 2009;127:1101–14.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Antonetti DA, Wolpert EB, DeMaio L, Harhaj NS, Scaduto RC. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem. 2002;80:667–77.

    Article  CAS  PubMed  Google Scholar 

  39. Nauck M, Karakiulakis G, Perruchoud AP, Papakonstantinou E, Roth M. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol. 1998;341:309–15.

    Article  CAS  PubMed  Google Scholar 

  40. Fischer S, Renz D, Schaper W, Karliczek GF. In vitro effects of dexamethasone on hypoxia-induced hyperpermeability and expression of vascular endothelial growth factor. Eur J Pharmacol. 2001;411:231–43.

    Article  CAS  PubMed  Google Scholar 

  41. Sears JE, Hoppe G. Triamcinolone acetonide destabilizes VEGF mRNA in Muller cells under continuous cobalt stimulation. Invest Ophthalmol Vis Sci. 2005;46:4336–41.

    Article  PubMed  Google Scholar 

  42. McAllister IL, Vijayasekaran S, Chen SD, Yu DY. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion. Am J Ophthalmol. 2009;147:838–46.

    Article  CAS  PubMed  Google Scholar 

  43. Kurtz RM, Elner VM, Bian ZM, Strieter RM, Kunkel SL, Elner SG. Dexamethasone and cyclosporin A modulation of human retinal pigment epithelial cell monocyte chemotactic protein-1 and interleukin-8. Invest Ophthalmol Vis Sci. 1997;38:436–45.

    CAS  PubMed  Google Scholar 

  44. Sadowski T, Steinmeyer J. Effects of polysulfated glycosaminoglycan and triamcinolone acetonid on the production of proteinases and their inhibitors by IL-1alpha treated articular chondrocytes. Biochem Pharmacol. 2002;64:217–27.

    Article  CAS  PubMed  Google Scholar 

  45. Kim YH, Choi MY, Kim YS, Park CH, Lee JH, Chung IY, et al. Triamcinolone acetonide protects the rat retina from STZ-induced acute inflammation and early vascular leakage. Life Sci. 2007;81:1167–73.

    Article  CAS  PubMed  Google Scholar 

  46. Mizuno S, Nishiwaki A, Morita H, Miyake T, Ogura Y. Effects of periocular administration of triamcinolone acetonide on leukocyte-endothelium interactions in the ischemic retina. Invest Ophthalmol Vis Sci. 2007;48:2831–6.

    Article  PubMed  Google Scholar 

  47. Bamforth SD, Lightman SL, Greenwood J. Interleukin-1 beta-induced disruption of the retinal vascular barrier of the central nervous system is mediated through leukocyte recruitment and histamine. Am J Pathol. 1997;150:329–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schraufstatter IU, Chung J, Burger M. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1094–103.

    Article  CAS  PubMed  Google Scholar 

  49. Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV. Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci. 2003;116:4615–28.

    Article  CAS  PubMed  Google Scholar 

  50. Wang K, Wang Y, Gao L, Li X, Li M, Guo J. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression. Biol Pharm Bull. 2008;31:1541–6.

    Article  CAS  PubMed  Google Scholar 

  51. Musashi K, Kiryu J, Miyamoto K, Miyahara S, Katsuta H, Tamura H, et al. Thrombin inhibitor reduces leukocyte-endothelial cell interactions and vascular leakage after scatter laser photocoagulation. Invest Ophthalmol Vis Sci. 2005;46:2561–6.

    Article  PubMed  Google Scholar 

  52. Ogata N, Ando A, Uyama M, Matsumura M. Expression of cytokines and transcription factors in photocoagulated human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2001;239:87–95.

    Article  CAS  PubMed  Google Scholar 

  53. Itaya M, Sakurai E, Nozaki M, Yamada K, Yamasaki S, Asai K, et al. Upregulation of VEGF in murine retina via monocyte recruitment after retinal scatter laser photocoagulation. Invest Ophthalmol Vis Sci. 2007;48:5677–83.

    Article  PubMed  Google Scholar 

  54. Xiao M, McLeod D, Cranley J, Williams G, Boulton M. Growth factor staining patterns in the pig retina following retinal laser photocoagulation. Br J Ophthalmol. 1999;83:728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hayreh SS, Fraterrigo L, Jonas J. Central retinal vein occlusion associated with cilioretinal artery occlusion. Retina. 2008;28:581–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors indicate that there was no financial support and there are no financial conflicts of interest. We thank Mr. Katsunori Shimada (Department of Biostatistics, STATZ Corporation, Tokyo) for assistance with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaka Noma.

About this article

Cite this article

Noma, H., Funatsu, H., Harino, S. et al. Vitreous inflammatory factors in macular edema with central retinal vein occlusion. Jpn J Ophthalmol 55, 248–255 (2011). https://doi.org/10.1007/s10384-011-0016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-011-0016-4

Keywords

Navigation