Skip to main content
Log in

Ancient pathogens in museal dry bone specimens: analysis of paleocytology and aDNA

Erreger in historischen Sammlungspräparaten: Analyse von Paläozytologie und alter DNA

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Bone samples investigated in this study derive from the pathologic–anatomical collection of the Natural History Museum of Vienna. In order to explore the survival of treponemes and treponemal ancient DNA in museal dry bone specimens, we analyzed three individuals known to have been infected with Treponema pallidum pallidum. No reproducible evidence of surviving pathogen’s ancient DNA (aDNA) was obtained, despite the highly sensitive extraction and amplification techniques (TPP15 and arp). Additionally, decalcification fluid of bone sections was smear stained with May-Gruenwald-Giemsa. The slides were examined using direct light microscope and dark field illumination. Remnants of spirochetal structures were detectable in every smear. Our results demonstrate that aDNA is unlikely to survive, but spirochetal remains are stainable and thus detectable.

Zusammenfassung

Die Knochenproben dieser Studie stammen aus der Pathologisch-anatomischen Sammlung des Naturhistorischen Museums in Wien. Um eine Aussage über den Erhalt von Treponemen und ihrer DNA in musealen Knochen treffen zu können, wurden drei Knochenpräparate von klinischen Syphilis Fällen untersucht. Trotz hochsensitiver Extraktions- und Amplifikationstechniken, konnte keine DNA des Syphiliserregers nachgewiesen werden. Zum zytologischen Nachweis von Treponemen, wurde Entkalkungsflüssigkeit der Knochenpräparate ausgestrichen und mit May-Grünwald-Giemsa gefärbt. Die Ausstriche wurden im Lichtmikroskop und im Dunkelfeld untersucht. Überreste von Strukturen mit großer Spirochäten Ähnlichkeit konnten in jedem Ausstrich in unterschiedlicher Ausprägung nachgewiesen werden. Obwohl der Nachweis der Erreger DNA nicht gelang, konnten Spirochäten Reste gefärbt und damit detektiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amory S, Huel R, Bilic A, Loreille O, Parsons TJ. Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet. 2012;6:398–406.

    Article  CAS  PubMed  Google Scholar 

  2. Anastasiou E, Mitchell PD. Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations. Gene. 2013;528:33–40.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson T, Arcini C, Anda S, Tangerud A, Robertsen G. Suspected endemic syphilis (treponarid) in sixteenth-century Norway. Med Hist. 1986;30:341–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Micr Infect. 2002;4:83–94.

    Article  Google Scholar 

  5. Arismendi J, Baker L, Matteson K. Effects of processing techniques on the forensic DNA analysis of human skeletal remains. J Forensic Sci. 2004;49:1–4.

    Article  Google Scholar 

  6. Aufderheide A, Rodriguez-Martin C. The Cambridge encyclopedia of human paleopathology. 1st ed. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  7. Barnes I, Thomas MG. Evaluating bacterial pathogen DNA preservation in museum osteological collections. Proc R Soc B. 2006;273:645–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bauer WH. Tooth buds and jaws in patients with congenital syphilis: correlation between distribution of Treponema pallidum and tissue reaction. Am J Pathol. 1944;20:297–310.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Bertarelli E. Spirochaeta pallida und Osteochondritis. Zentralbl F Bakt Org. 1906;41:639–43.

    Google Scholar 

  10. Blondiaux J, Charlier P. Palaeocytology in skeletal remains: microscopic examination of putrefaction fluid deposits and dental calculus of skeletal remains from French archaeological sites. Int J Osteoarchaeol. 2008;18:1–10.

    Article  Google Scholar 

  11. Bouwman AS, Brown TA. The limits of biomolecular paleopathology: ancient DNA cannot be used to study venereal syphilis. J Archaeol Sci. 2005;32:703–13.

    Article  Google Scholar 

  12. Brown KA, Brown TA. Biomolecular archaeology. Annu Rev Anthropol. 2013;42:159–74.

    Article  Google Scholar 

  13. Caretta G, Piontelli E. Preserved ascomatal and other fungal structures on the remains of a ninth century Longobard abbess exhumed from a monastery in Pavia, Italy. Mycopathol. 1998;140:77–83.

    Article  CAS  Google Scholar 

  14. Castellani A. On the presence of spirochaetes in two cases of ulcerated parangi (yaws). Brit Med J. 1905;2:1280, 1330–31, 1430.

  15. Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Reid TB, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013;7:e2222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Charlier P, Georges P, Bouchet F, Huynh-Charlier I, Carlier R, Mazel V, Richardin P, Brun L, Blondiaux J, Lorin de la Grandmaison G. The microscopic (optical and SEM) examination of putrefaction fluid deposits (PFD). Potential interest in forensic anthropology. Virchows Arch. 2008;453:377–86.

    Article  CAS  PubMed  Google Scholar 

  17. Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CL, Roberts JP. The survival of organic matter in bone: a review. Archaeometry. 2002;44:383–94.

    Article  CAS  Google Scholar 

  18. Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science. 2000;289(5482):1139.

    Article  CAS  PubMed  Google Scholar 

  19. Cotran RS, Kumar V, Collins T. Robbins pathologic basis of disease. 6th ed. Toronto: WB Saunders Company; 1999.

    Google Scholar 

  20. De Boer HH, Aarents MJ, Maat GJR. Manual for the preparation and staining of embedded natural dry bone tissue sections for microscopy. Int J Osteoarchaeol. 2013;2:83–93.

    Article  Google Scholar 

  21. De Boer HH, Van der Merwe AE, Maat GJR. The diagnostic value of microscopy in dry bone palaeopathology: A review. Int J Paleopathol. 2013;3(2):113–21.

    Article  Google Scholar 

  22. Dore B, Pavan F, Masali M. Histological techniques and microscopic analysis of biological agents for preservation of human bone remains. Biotechnic Histochem. 2001;76(2):89–95.

    Article  Google Scholar 

  23. Drancourt M, Raoult D. Palaeomicrobiology: current issues and perspectives. Nat Rev. 2005;3:23–35.

  24. Faerman M, Nebel A, Filon D, Thomas M, Bradman N, Ragsdale D, Schultz M, Oppenheim A. From a dry bone to a genetic portrait: a case of sickle cell anemia. Am J Phys Anthropol. 2000;111:153–63.

    Article  CAS  PubMed  Google Scholar 

  25. Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelmann M. Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. Am J Phys Anthropol. 2003;120:144–52.

    Article  PubMed  Google Scholar 

  26. Giacani L, Chattopadhyay S, Centurion-Lara A, Jeffrey BM, Le HT, Molini BJ, Lukehart SA, Sokurenko EV, Rockey DD. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl Trop Dis. 2012;6(6):e1698.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Grin EI. Epidemiology and control of endemic syphilis. Report on a mass-treatment campaign in Bosnia. Geneva: World Health Organization; 1953.

    Google Scholar 

  28. Guarino FM, Angelini F, Odierna G, Bianco MR, Di Bernardo G, Forte A, Cascino A, Cipollaro M. Detection of DNA in ancient bones using histochemical methods. Biotechnic Histochem. 2000;75(2):110–7.

    Article  CAS  Google Scholar 

  29. Jackes M, Sherburne R, Lubell D, Barker C, Wayman M. Destruction of microstructure in archaeological bone: a case study from Portugal. Int J Osteoarchaeol. 2001;11:415–32.

    Article  Google Scholar 

  30. Haas CJ, Zink A, Palfi G, Szeimies U, Nerlich AG. Detection of leprosy in ancient human skeletal remains by molecular identification of Mycobacterium leprae. Am J Clin Pathol. 2000;114:428–36.

    CAS  PubMed  Google Scholar 

  31. Hackett CJ. Diagnostic criteria of syphilis, yaws and treponarid (treponematoses) and of some other diseases in dry bones. 1st ed. Vienna: Springer; 1976.

    Book  Google Scholar 

  32. Hackett CJ. Microscopic focal destruction (tunnels) in exhumed human bones. Med Sci Law. 1981;21:243–65.

    CAS  PubMed  Google Scholar 

  33. Haensch S, Bianucci R. Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog. 2010;6(10):e1001134.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Harper KN, Zuckerman MK, Harper ML, Kingston JD, Armelagos GJ. The origin and antiquity of syphilis revisited: an appraisal of Old World pre-Columbian evidence for treponemal infection. Yrbk Phys Anthropol. 2011;54:99–133.

  35. Jaffe HJ. Metabolic, degenerative and inflammatory diseases of bones and joints. Philadelphia: Lea & Febiger; 1972.

    Google Scholar 

  36. Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H. Characterisation of microbial attack on archaeological bone. J Archaeol Sci. 2004;31:87–95.

    Article  Google Scholar 

  37. Kircher M, Kelso J. High- throughput DNA sequencing- concepts and limitations. Bioessays. 2010;32:524–36.

    Article  CAS  PubMed  Google Scholar 

  38. Knapp M, Hofreiter M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes. 2010;1:227–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Knox JM, Musher D, Guzick ND. The pathogenesis of syphilis and the related treponematoses. In: Johnson RC, editor. The biology of parasitic spirochetes. 1st ed. New York: Academic Press; 1976. pp. 249–60.

  40. Kolman CJ, Centurion-Lara A, Lukehart SA, Owsley DW, Tuross N. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J Infect Dis. 1999;180:2060–3.

    Article  CAS  PubMed  Google Scholar 

  41. Lepidi H. Histologic detection of past pathogens. In: Raoult D, Drancourt M, editors. Paleomicrobiology: past human infections. 1st ed. Berlin: Springer; 2008. pp. 69–72.

  42. Maat GJR. Ultrastructure of normal and pathological fossilized blood cells compared with pseudopathological biological structures. Int J Osteoarchaeol. 1991;1:209–14.

    Article  Google Scholar 

  43. Maixner F, Thomma A, Cipollini G, Widder S, Rattei, T, Zink A. Metagenomic analysis reveals presence of Treponema denticola in a tissue biospy of the Iceman. PloS ONE. 2014;9(6):e99994.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. McPhee SJ. Secondary syphilis: uncommon manifestations of a common disease. West J Med. 1984;140:35–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Meheus A. Non venereal-treponematoses. Med. 2005;33:82–4.

    Article  Google Scholar 

  47. Michaëlis L. Vergleichende mikroskopische Untersuchungen an rezenten, historischen und fossilen menschlichen Knochen. Jena: Gustav Fischer; 1930.

    Google Scholar 

  48. Montiel R, Solórzano E, Díaz N, Álvarez-Sandoval BA, González-Ruiz M, Can͂adas MP, Simo͂es N, Isidro A, Malgosa A. Neonate human remains: a window of opportunity to the molecular study of ancient syphilis. PLoS ONE. 2012;7(5):e36371.

    Article  Google Scholar 

  49. Mulligan CJ, Norris SJ, Lukehart SA. Molecular studies in Treponema pallidum evolution: toward clarity? PloS Negl Trop Dis. 2008;2(1):e184.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Musher DM, Baughn RE. Syphilis. In: Mandel GL, editor. Atlas of infectious diseases. 2nd ed. Toronto: WB Saunders Company; 1998.

  51. Nestmann F. Histologische Untersuchungen an syphilitisch veränderten Tibien. Archiv orthopäd Unfallchir. 1927;16:237–52.

    Google Scholar 

  52. Noguchi H. Morphological and pathogenic variations in Treponema pallidum. J Exp M. 1912;15:201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ollé-Goig JE, Barrio JL, Gurgui M, Mildvan D. Bone invasion in secondary syphilis: case reports. Genitourin Med. 1988;64:198–201.

    PubMed Central  PubMed  Google Scholar 

  54. Ortner DJ. Human skeletal paleopathology. Int J Paleopathol. 2011a;1:4–11.

    Article  Google Scholar 

  55. Ortner DJ. What skeletons tell us. The story of human paleopathology. Virchows Arch 2011b;459:247–54.

    Article  PubMed  Google Scholar 

  56. Peeling RW, Hook EW. The pathogenesis of syphilis: the great mimicker, revisited. J Pathol. 2006;208(2):224–32.

    Article  CAS  PubMed  Google Scholar 

  57. Perine PL, Hopkins DR, Niemel PLA, John RKS, Causse G, Antal GM. Handbook of endemic treponematoses: yaws, endemic syphilis, and pinta. Geneva: World Health Organization; 1984.

    Google Scholar 

  58. Pósa AM, Maixner F, Lovász G, Molnár E, Bereczki Z, Perrin P, Zink A, Pálfi G. Revision of tuberculous lesions in the Bácsalmás-Óalmás series-preliminary morphological and biomolecular studies. Anthrop Anz. 2012;70(1):83–100.

    Article  Google Scholar 

  59. Resnick D, Niwayama G. Diagnosis of bone and joint disorders. 2nd ed. Philadelphia: WB Saunders; 1988.

    Google Scholar 

  60. Roberts C, Ingham S. Using ancient DNA analysis in palaeopathology: a critical analysis of published papers, with recommendation for future work. Int J Osteoarchaeol. 2008;18:600–13.

    Article  Google Scholar 

  61. Ruehli FJ, Schultz M, Evison R, Müller R, Kuhn G. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am J Phys Anthropol. 2007;33:1099–111.

    Article  Google Scholar 

  62. Salazar JC, Hazlett KR, Radolf JD. The immune response to infection with Treponema pallidum, the stealth pathogen. Microb Infect. 2002;4:1133–40.

    Article  CAS  Google Scholar 

  63. Schaudinn F, Hoffmann E. Ueber Spirochaetenbefunde im Lymphdrüsensaft Syphilitischer. Deut Med Wochenschr. 1905;31:711.

    Article  Google Scholar 

  64. Schmidt-Schultz TH, Schultz M. Bone protects proteins over thousands of years: extraction, anlysis, and interpretation of extracellular matrix proteins in archeological skeletal remains. Am J Phys Anthropol. 2004;123:30–9.

    Article  PubMed  Google Scholar 

  65. Schneider P. Zum Problem der Syphilislatenz (Spirochätenpersistenz im Knochensystem). München Med Wochen. 1920;44:1259–60.

    Google Scholar 

  66. Schneider P. Anatomie, Röntgenologie und Bakteriologie der angeborenen Frühsyphilis des Knochensystems. Ergebn Allg Path. 1924;20(2):185–212.

    Google Scholar 

  67. Schultz M, Teschler-Nicola M. Krankhafte Veränderungen an den Skeletten aus dem Karner der St. Martins-Kirche in Klosterneuburg, Niederösterreich. Teil I-IV. Ann Naturhist Mus 1987;89 A:225–311.

  68. Schultz M. Comparative histopathology of syphilitic lesions in prehistoric and historic human bones. In: Dutour O, Pálfi G, Bérato J, Brun JP, editors. The origin of syphilis in Europe: before or after 1493? Toulons. Paris: Editions Errance; 1994. pp. 185–203.

    Google Scholar 

  69. Schultz M. Paleohistopathology: a new approach to the study of ancient diseases. Yearb Phys Anthropol. 2001;44:106–47.

    Article  Google Scholar 

  70. Schultz M. Diagnosis of leprosy in skeletons from an English later Medieval hospital using histological analysis. In: Roberts C, editor. The past and present of leprosy: archaeological, historical, palaeopathological and clinical approaches. Oxford: Archaeopress; 2002. pp. 89–104.

  71. Schweitzer MH, Wittmeyer JL, Horner JR. Soft tissue and cellular peservation in vertebrate skeletal elements from the Cretaceous to the present. Proc R Soc B. 2007;274:183–97.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Setzer TJ, Sundell IB, Dibbley SK, Les C. Technical note: a histological technique for detecting the cryptic preservation of erythrocytes and sof tissue. Am J Phys Anthropol. 2013;152:566–8.

    Article  PubMed  Google Scholar 

  73. Slavec ZZ. Morbus Škerljevo—an unknown disease among slovenians in the first half of the 19th century. Wien Klin Wochenschr. 1996;108(23):764–70.

    CAS  PubMed  Google Scholar 

  74. Spigelman M, Shin DH, Gal GKB. The promise, the problems, and the future of DNA analysis in paleopathology studies. Grauer AL, editor. A companion to paleopathology. Oxford: Willey-Blackwell; 2012.

    Google Scholar 

  75. Steinbock RT. Paleopathological diagnosis and interpretation. Illinois: Charles C. Thomas; 1976.

    Google Scholar 

  76. Stout SD, Teitelbaum SL. Histological analysis of undecalcified thin sections of archaeological bone. Am J Phys Anthropol. 1976;44:263–9.

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki T. Paleopathological and paleoepidemiological study of osseous syphilis in skulls of the Edo Period. University Museum, University of Tokyo, Bulletin. 1984;23:1–48.

    Google Scholar 

  78. Taylor GM, Widdison S, Brown IN, Young D, Molleson T. A medievl case of lepromatous leprosy from 13 to 14th century Orkney, Scotland. J Archaeol Sci. 2000;27:1133–8.

    Article  Google Scholar 

  79. Taylor GM, Mays SA, Huggett JF. Ancient DNA (aDNA) studies of man and microbes: general similarities, specific differences. Int J Osteoarchaeol. 2010;20:747–51.

    Article  Google Scholar 

  80. Tran TNN, Aboudharam G, Raoult D, Drancourt M. Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. BioTechniques. 2011;50:370–80.

    Article  CAS  PubMed  Google Scholar 

  81. Tsangaras K, Greenwood AD. Museums and disease: using tissue archive and museum samples to study pathogens. Ann Anat. 2012:194:58–73.

    Article  CAS  PubMed  Google Scholar 

  82. Virchow R. Beitrag zur Geschichte der Lues. Derm Z. 1896;3:1–9.

    Article  Google Scholar 

  83. Von Hunnius TE, Roberts CA, Bolyston A, Saunders S. Histological identification of syphilis in pre-Columbian England. Am J Phys Anthropol. 2006;129:559–66.

    Article  Google Scholar 

  84. Von Hunnius TE, Yang D, Eng B, Waye JS, Saunders SR. Digging deeper into the limits of ancient DNA research on syphilis. J Archaeol Sci. 2007;34:2091–2100.

  85. Weber M. Schliffe von mazerierten Röhrenknochen und ihre Bedeutung für die Unterscheidung der Syphilis und Osteomyelitis von Osteodystrophia fibrosa sowie für die Untersuchung fraglich syphilitischer, prähistorischer Knochen. Beitr pathol Anat allg Path. 1927;78:441–511.

    Google Scholar 

  86. Weston DA. Brief communication: paleohistopathological analysis of museum specimens: can periosteal reaction microstructure explain lesion etiology? Am J Phys Anthropol. 2009;140:186–93.

    Article  PubMed  Google Scholar 

  87. Wiechmann I, Grupe G. Detection of Yersinia pestis DNA in two early medieval skeletal finds from Aschheim (Upper Bavaria, 6th century A.D.). Am J Phys Anthropol. 2004;126:48–55.

    Article  Google Scholar 

  88. Zink AR, Reischl U, Wolf H, Nerlich AG. Molecular analysis of ancient microbial infections. FEMS Microbio Lett 2002;213:41–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaul, J., Winter, E. & Grossschmidt, K. Ancient pathogens in museal dry bone specimens: analysis of paleocytology and aDNA. Wien Med Wochenschr 165, 133–139 (2015). https://doi.org/10.1007/s10354-015-0357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-015-0357-6

Keywords

Schlüsselwörter

Navigation