Skip to main content
Log in

Österreichischer Leitfaden zur medikamentösen Therapie der postmenopausalen Osteoporose – Update 2009

Austrian guidance for the pharmacological treatment of osteoporosis in postmenopausal women – update 2009

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Osteoporosis is a systemic skeletal disease characterized by diminished bone mass and deterioration of bone microarchitecture, leading to increased fragility and subsequent increased fracture risk. Therapeutic measures therefore aim at reducing individual fracture risk. In Austria, the following drugs, all of which have been proven to reduce fracture risk, are currently registered for the treatment of postmenopausal osteoporosis: alendronate, risedronate, etidronate, ibandronate, raloxifene, teriparatide (1-34 PTH), 1-84 PTH, strontium ranelate and salmon calcitonin. Fluorides are still available, but their role in daily practice has become negligible. Currently, there is no evidence that a combination of two or more of these drugs could improve anti-fracture potency. However, treatment with PTH should be followed by the treatment with an anticatabolic drug such as bisphosphonates. Calcium and vitamin D constitute an important adjunct to any osteoporosis treatment.

Zusammenfassung

Die Osteoporose ist eine systemische Skeletterkrankung, die durch eine verminderte Knochenmasse sowie eine gestörte Mikroarchitektur des Knochens charakterisiert ist. Die Folge dieser Veränderungen ist eine eingeschränkte Knochenqualität mit einem entsprechend erhöhten Risiko für Frakturen. Oberstes Ziel jeder therapeutischen Intervention ist daher die Reduktion dieses erhöhten Frakturrisikos. Die Palette der in Österreich zur Therapie der postmenopausalen Osteoporose zugelassenen Pharmaka mit nachgewiesenem Potenzial zur Senkung des Frakturrisikos umfasst derzeit fünf Bisphosphonate (Alendronat, Risedronat, Etidronat, Ibandronat und Zoledronat), einen selektiven Östrogen-Rezeptormodulator (Raloxifen), zwei Parathormon-Analoga (1-34 PTH bzw. Teriparatid sowie 1-84 PTH), Strontiumranelat sowie Lachskalzitonin. Fluoride stehen theoretisch zur Verfügung, gelangen in der Praxis jedoch nicht mehr zur Anwendung. Es gibt keine Evidenz dafür, dass Kombinationstherapien Einzeltherapien überlegen sind. Im Anschluss an eine Therapie mit Parathormon-Analoga sollte jedoch eine antikatabole Therapie erfolgen. Eine adäquate Zufuhr von Kalzium und Vitamin D stellt ein wichtiges Adjunkt jeder Osteoporosetherapie dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med, 94(6): 646–650, 1993

    Google Scholar 

  • Keine Autoren angegeben: Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med, 90(1): 107–110, 1991

    Google Scholar 

  • Kanis JA, Melton LJ 3rd, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res, 9(8): 1137–1141, 1994

    PubMed  CAS  Google Scholar 

  • Burr DB. Osteoporosis and fracture risk: bone matrix quality. J Musculoskelet Neuronal Interact, 2(6): 525–526, 2002

    PubMed  CAS  Google Scholar 

  • Lofthus CM, Osnes EK, Meyer HE, et al. Young patients with hip fracture: a population-based study of bone mass and risk factors for osteoporosis. Osteoporos Int, 17(11): 1666–1672, 2006

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest, 115(12): 3318–3325, 2005

    Article  PubMed  CAS  Google Scholar 

  • Seeman E, Delmas PD. Bone quality – the material and structural basis of bone strength and fragility. N Engl J Med, 354(21): 2250–2261, 2006

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Burlet N, Cooper C, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int, 19(4): 399–428, 2008

    Article  PubMed  CAS  Google Scholar 

  • Keine Autoren angegeben. Osteoporosis prevention, diagnosis, and therapy. JAMA, 285(6): 785–795, 2001

    Google Scholar 

  • Kanis JA, Geusens P, Christiansen C. Guidelines for clinical trials in osteoporosis. A position paper of the European Foundation for Osteoporosis and Bone Disease. Osteoporos Int, 1(3): 182–188, 1991

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int, 11(3): 192–202, 2000

    Article  PubMed  CAS  Google Scholar 

  • Melton LJ, 3rd. How many women have osteoporosis now? J Bone Miner Res, 10(2): 175–177, 1995

    PubMed  Google Scholar 

  • Miller PD, Siris ES, Barrett-Connor E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res, 17(12): 2222–2230, 2002

    Article  PubMed  Google Scholar 

  • Barrett-Connor E, Siris ES, Wehren LE, et al. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res, 20(2): 185–194, 2005

    Article  PubMed  Google Scholar 

  • Wang CY, Nguyen ND, Morrison NA, et al. Beta3-adrenergic receptor gene, body mass index, bone mineral density and fracture risk in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). BMC Med Genet, 7: 57, 2006

    Article  PubMed  CAS  Google Scholar 

  • Siris ES, Brenneman SK, Barrett-Connor E, et al. The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporos Int, 17(4): 565–574, 2006

    Article  PubMed  CAS  Google Scholar 

  • Boonen S, Crepaldi G. Reducing fracture risk in the oldest old: aging and the effect of pharmaceutical interventions in osteoporosis. Aging Clin Exp Res, 19(1): 1–3, 2007

    PubMed  CAS  Google Scholar 

  • Kanis JA, Delmas P, Burckhardt P, et al. Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int, 7(4): 390–406, 1997

    Article  PubMed  CAS  Google Scholar 

  • Nguyen ND, Ahlborg HG, Center JR, et al. Residual lifetime risk of fractures in women and men. J Bone Miner Res, 22(6): 781–788, 2007

    Article  PubMed  Google Scholar 

  • Vescini F, Francucci CM, Buffa A, et al. Does bone mineral density predict fractures comparably in women and men? J Endocrinol Invest, 28(10 Suppl): 48–51, 2005

    PubMed  CAS  Google Scholar 

  • Lippuner K, Golder M, Greiner R. Epidemiology and direct medical costs of osteoporotic fractures in men and women in Switzerland. Osteoporos Int, 16(Suppl 2): S8–S17, 2005

    Article  PubMed  Google Scholar 

  • Khan SA, de Geus C, Holroyd B, et al. Osteoporosis follow-up after wrist fractures following minor trauma. Arch Intern Med, 161(10): 1309–1312, 2001

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Oden A, Johnell O, et al. The components of excess mortality after hip fracture. Bone, 32(5): 468–473, 2003

    Article  PubMed  CAS  Google Scholar 

  • Center JR, Nguyen TV, Schneider D, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet, 353(9156): 878–882, 1999

    Article  PubMed  CAS  Google Scholar 

  • Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest, 95(2 Suppl): 2S–4S, 1989

    Article  PubMed  CAS  Google Scholar 

  • Philips B. Oxford Centre for Evidence-based Medicine Levels of Evidence. [cited, 15. 7. 2007]; Erhältlich unter: http://www.cebm.net/?o=1023, 2007

  • Harbour R, Miller J. A new system for grading recommendations in evidence based guidelines. BMJ, 323(7308): 334–336, 2001

    Article  PubMed  CAS  Google Scholar 

  • Dimai HP, Pietschmann P, Resch H, et al. Guidelines for drug therapy of postmenopausal osteoporosis. Wien Med Wochenschr, 152(23–24): 596–612, 2002

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int, 4(6): 368–381, 1994

    Article  PubMed  CAS  Google Scholar 

  • Greenspan SL, von Stetten E, Emond SK, et al. Instant vertebral assessment: a noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of osteoporosis. J Clin Densitom, 4(4): 373–380, 2001

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int, 16(6): 581–589, 2005

    Article  PubMed  Google Scholar 

  • Kanis JA, Johnell O, Oden A, et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int, 19(4): 385–397, 2008

    Article  PubMed  CAS  Google Scholar 

  • Marcus R, Wong M, Heath H 3rd, et al. Antiresorptive treatment of postmenopausal osteoporosis: comparison of study designs and outcomes in large clinical trials with fracture as an endpoint. Endocr Rev, 23(1): 16–37, 2002

    Article  PubMed  CAS  Google Scholar 

  • Oglesby AK, Minshall ME, Shen W, et al. The impact of incident vertebral and non-vertebral fragility fractures on health-related quality of life in established postmenopausal osteoporosis: results from the teriparatide randomized, placebo-controlled trial in postmenopausal women. J Rheumatol, 30(7): 1579–1583, 2003

    PubMed  Google Scholar 

  • Adachi JD, Ioannidis G, Olszynski WP, et al. The impact of incident vertebral and non-vertebral fractures on health related quality of life in postmenopausal women. BMC Musculoskelet Disord, 3: 11, 2002

    Article  PubMed  Google Scholar 

  • Adachi JD, Ioannidis G, Pickard L, et al. The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int, 14(11): 895–904, 2003

    Article  PubMed  CAS  Google Scholar 

  • Brenneman SK, Barrett-Connor E, Sajjan S, et al. Impact of recent fracture on health-related quality of life in postmenopausal women. J Bone Miner Res, 21(6): 809–816, 2006

    Article  PubMed  Google Scholar 

  • Cockerill W, Lunt M, Silman AJ, et al. Health-related quality of life and radiographic vertebral fracture. Osteoporos Int, 15(2): 113–119, 2004

    Article  PubMed  CAS  Google Scholar 

  • Fechtenbaum J, Cropet C, Kolta S, et al. The severity of vertebral fractures and health-related quality of life in osteoporotic postmenopausal women. Osteoporos Int, 16(12): 2175–2179, 2005

    Article  PubMed  CAS  Google Scholar 

  • Hallberg I, Rosenqvist AM, Kartous L, et al. Health-related quality of life after osteoporotic fractures. Osteoporos Int, 15(10): 834–841, 2004

    Article  PubMed  CAS  Google Scholar 

  • Oleksik AM, Ewing S, Shen W, et al. Impact of incident vertebral fractures on health related quality of life (HRQOL) in postmenopausal women with prevalent vertebral fractures. Osteoporos Int, 16(8): 861–870, 2005

    Article  PubMed  Google Scholar 

  • Salaffi F, Cimmino MA, Malavolta N, et al. The burden of prevalent fractures on health-related quality of life in postmenopausal women with osteoporosis: the IMOF study. J Rheumatol, 34(7): 1551–1560, 2007

    PubMed  Google Scholar 

  • Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet, 359(9319): 1761–1767, 2002

    Article  PubMed  Google Scholar 

  • Mallows JL. Clinical outcomes after acute osteoporotic vertebral fractures. Med J Aust, 184(11): 589; author reply -90, 2006

    PubMed  Google Scholar 

  • Melton LJ 3rd. Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res, 18(6): 1139–1141, 2003

    Article  PubMed  Google Scholar 

  • Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res, 15(4): 721–739, 2000

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johansson H, Oden A, et al. A family history of fracture and fracture risk: a meta-analysis. Bone, 35(5): 1029–1037, 2004

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johnell O, De Laet C, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone, 35(2): 375–382, 2004

    Article  PubMed  CAS  Google Scholar 

  • Johnell O, Kanis JA, Oden A, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int, 15(3): 175–179, 2004

    Article  PubMed  CAS  Google Scholar 

  • Center JR, Bliuc D, Nguyen TV, et al. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA, 297(4): 387–394, 2007

    Article  PubMed  CAS  Google Scholar 

  • Formiga F, Rivera A, Nolla JM, et al. Failure to treat osteoporosis and the risk of subsequent fractures in elderly patients with previous hip fracture: a five-year retrospective study. Aging Clin Exp Res, 17(2): 96–99, 2005

    PubMed  Google Scholar 

  • Epstein S. The roles of bone mineral density, bone turnover, and other properties in reducing fracture risk during antiresorptive therapy. Mayo Clin Proc, 80(3): 379–388, 2005

    Article  PubMed  Google Scholar 

  • Sarkar S, Reginster JY, Crans GG, et al. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. J Bone Miner Res, 19(3): 394–401, 2004

    Article  PubMed  Google Scholar 

  • de Boer MR, Pluijm SM, Lips P, et al. Different aspects of visual impairment as risk factors for falls and fractures in older men and women. J Bone Miner Res, 19(9): 1539–1547, 2004

    Article  PubMed  Google Scholar 

  • Dargent-Molina P, Benhamou CL, Cortet B, et al. Devising global strategies for fracture-risk evaluation. Joint Bone Spine, 74(3): 240–244, 2007

    Article  PubMed  Google Scholar 

  • Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res, 11(10): 1531–1538, 1996

    Article  PubMed  CAS  Google Scholar 

  • Weycker D, Macarios D, Edelsberg J, et al. Compliance with osteoporosis drug therapy and risk of fracture. Osteoporos Int, 18(3):271–277, 2007

    Article  PubMed  CAS  Google Scholar 

  • Lunt M, O'Neill TW, Felsenberg D, et al. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone, 33(4): 505–513, 2003

    Article  PubMed  Google Scholar 

  • Nguyen ND, Pongchaiyakul C, Center JR, et al. Abdominal fat and hip fracture risk in the elderly: the Dubbo Osteoporosis Epidemiology Study. BMC Musculoskelet Disord, 6: 11, 2005

    Article  PubMed  Google Scholar 

  • Kanis JA, Johnell O, Oden A, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int, 16(2): 155–162, 2005

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard P, Mosekilde L. Fracture risk associated with smoking: a meta-analysis. J Intern Med, 254(6): 572–583, 2003

    Article  PubMed  CAS  Google Scholar 

  • de Vries F, Pouwels S, Lammers JW, et al. Use of inhaled and oral glucocorticoids, severity of inflammatory disease and risk of hip/femur fracture: a population-based case-control study. J Intern Med, 261(2): 170–177, 2007

    Article  PubMed  CAS  Google Scholar 

  • van Staa TP, Geusens P, Pols HA, et al. A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM, 98(3): 191–198, 2005

    Article  PubMed  Google Scholar 

  • Lord SR. Visual risk factors for falls in older people. Age Ageing, 35(Suppl 2): ii42–ii45, 2006

    Article  PubMed  Google Scholar 

  • Aizen E, Dranker N, Swartzman R, et al. Risk factors and characteristics of falls resulting in hip fracture in the elderly. Isr Med Assoc J, 5(5): 333–336, 2003

    PubMed  Google Scholar 

  • Komatsu T, Kim KJ, Kaminai T, et al. Clinical factors as predictors of the risk of falls and subsequent bone fractures due to osteoporosis in postmenopausal women. J Bone Miner Metab, 24(5): 419–424, 2006

    Article  PubMed  Google Scholar 

  • Kooijman AC, Cornelissen FW. Better lighting to reduce falls and fracture? A comment on de Boer et al. (2004) Different aspects of visual impairment as risk factors for falls and fractures in older men and women. J Bone Miner Res, 20(11): 2061–2062; author reply 3, 2005

    Article  PubMed  Google Scholar 

  • Shumway-Cook A, Ciol MA, Gruber W, et al. Incidence of and risk factors for falls following hip fracture in community-dwelling older adults. Phys Ther, 85(7): 648–655, 2005

    PubMed  Google Scholar 

  • Liu-Ambrose T, Eng JJ, Khan KM, et al. Older women with osteoporosis have increased postural sway and weaker quadriceps strength than counterparts with normal bone mass: overlooked determinants of fracture risk? J Gerontol A Biol Sci Med Sci, 58(9): M862–M866, 2003

    PubMed  Google Scholar 

  • Garnero P, Delmas PD. Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact, 4(1): 50–63, 2004

    PubMed  CAS  Google Scholar 

  • Miller PD. Bone density and markers of bone turnover in predicting fracture risk and how changes in these measures predict fracture risk reduction. Curr Osteoporos Rep, 3(3): 103–110, 2005

    Article  PubMed  Google Scholar 

  • Reid DM. Can high bone turnover markers identify osteopenic postmenopausal women at risk of future fracture? Nat Clin Pract Endocrinol Metab, 3(8): 570–571, 2007

    Article  PubMed  Google Scholar 

  • Frost HM. Should future risk-of-fracture analyses include another major risk factor? The case for falls. J Clin Densitom, 4(4): 381–383, 2001

    Article  PubMed  CAS  Google Scholar 

  • Valtola A, Honkanen R, Kroger H, et al. Lifestyle and other factors predict ankle fractures in perimenopausal women: a population-based prospective cohort study. Bone, 30(1): 238–242, 2002

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Oden A, Johnell O, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int, 18(8): 1033–1046, 2007

    Article  PubMed  CAS  Google Scholar 

  • Weisman SM, Matkovic V. Potential use of biochemical markers of bone turnover for assessing the effect of calcium supplementation and predicting fracture risk. Clin Ther, 27(3): 299–308, 2005

    Article  PubMed  CAS  Google Scholar 

  • Siris ES, Brenneman SK, Miller PD, et al.: Predictive value of low BMD for 1-year fracture outcomes is similar for postmenopausal women ages 50-64 and 65 and older: results from the National Osteoporosis Risk Assessment (NORA). J Bone Miner Res, 19(8): 1215–1220, 2004

    Article  PubMed  Google Scholar 

  • Ahlborg HG, Johnell O, Turner CH, et al. Bone loss and bone size after menopause. N Engl J Med, 349(4): 327–334, 2003

    Article  PubMed  Google Scholar 

  • Fratzl P, Roschger P, Eschberger J, et al. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle X-ray-scattering study. J Bone Miner Res, 9(10): 1541–1549, 1994

    PubMed  CAS  Google Scholar 

  • Cummings SR. The paradox of small changes in bone density and reductions in risk of fracture with raloxifene. Ann N Y Acad Sci, 949: 198–201, 2001

    PubMed  CAS  Google Scholar 

  • Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med, 112(4): 281–289, 2002

    Article  PubMed  CAS  Google Scholar 

  • Hochberg MC, Ross PD, Black D, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Fracture Intervention Trial Research Group. Arthritis Rheum, 42(6): 1246–1254, 1999

    Article  PubMed  CAS  Google Scholar 

  • Wasnich RD, Miller PD. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab, 85(1): 231–236, 2000

    Article  PubMed  CAS  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med, 344(19): 1434–1441, 2001

    Article  PubMed  CAS  Google Scholar 

  • Divittorio G, Jackson KL, Chindalore VL, et al. Examining the relationship between bone mineral density and fracture risk reduction during pharmacologic treatment of osteoporosis. Pharmacotherapy, 26(1): 104–114, 2006

    Article  PubMed  CAS  Google Scholar 

  • Martens MG. Risk of fracture and treatment to prevent osteoporosis-related fracture in postmenopausal women. A review. J Reprod Med, 48(6): 425–434, 2003

    PubMed  Google Scholar 

  • Hochberg MC, Greenspan S, Wasnich RD, et al. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab, 87(4): 1586–1592, 2002

    Article  PubMed  CAS  Google Scholar 

  • Watts NB, Geusens P, Barton IP, et al. Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res, 20(12): 2097–2104, 2005

    Article  PubMed  Google Scholar 

  • van der Linden JC, Weinans H. Effects of microarchitecture on bone strength. Curr Osteoporos Rep, 5(2): 56–61, 2007

    Article  PubMed  Google Scholar 

  • Hernandez CJ, Gupta A, Keaveny TM. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res, 21(8): 1248–1255, 2006

    Article  PubMed  Google Scholar 

  • Cefalu CA. Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin, 20(3): 341–349, 2004

    Article  PubMed  Google Scholar 

  • Sarkar S, Mitlak BH, Wong M, et al. Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res, 17(1): 1–10, 2002

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY, Sarkar S, Zegels B, et al. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone, 34(2): 344–351, 2004

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Satterwhite JH, Licata AA, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res, 20(6): 962–970, 2005

    Article  PubMed  CAS  Google Scholar 

  • Lyritis GP, Ioannidis GV, Karachalios T, et al. Analgesic effect of salmon calcitonin suppositories in patients with acute pain due to recent osteoporotic vertebral crush fractures: a prospective double-blind, randomized, placebo-controlled clinical study. Clin J Pain, 15(4): 284–289, 1999

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M. Analgesic mechanism of calcitonin. J Bone Miner Metab, 18(4): 230–233, 2000

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Torres M, Alonso G, Raya MP. Calcitonin therapy in osteoporosis. Treat Endocrinol, 3(2): 117–132, 2004

    Article  PubMed  CAS  Google Scholar 

  • Knopp JA, Diner BM, Blitz M, et al. Calcitonin for treating acute pain of osteoporotic vertebral compression fractures: a systematic review of randomized, controlled trials. Osteoporos Int, 16(10): 1281–1290, 2005

    Article  PubMed  CAS  Google Scholar 

  • Rovetta G, Monteforte P, Balestra V. Intravenous clodronate for acute pain induced by osteoporotic vertebral fracture. Drugs Exp Clin Res, 26(1): 25–30, 2000

    PubMed  CAS  Google Scholar 

  • McKiernan F, Faciszewski T, Jensen R. Quality of life following vertebroplasty. J Bone Joint Surg Am, 86-A(12): 2600–2606, 2004

    PubMed  Google Scholar 

  • Serra L, Kermani FM, Panagiotopoulos K, et al. Vertebroplasty in the treatment of osteoporotic vertebral fractures: results and functional outcome in a series of 175 consecutive patients. Minim Invasive Neurosurg, 50(1): 12–17, 2007

    Article  PubMed  CAS  Google Scholar 

  • Grafe IA, Da Fonseca K, Hillmeier J, et al. Reduction of pain and fracture incidence after kyphoplasty: 1-year outcomes of a prospective controlled trial of patients with primary osteoporosis. Osteoporos Int, 16(12): 2005–2012, 2005

    Article  PubMed  Google Scholar 

  • Gill JB, Kuper M, Chin PC, et al. Comparing pain reduction following kyphoplasty and vertebroplasty for osteoporotic vertebral compression fractures. Pain Physician, 10(4): 583–590, 2007

    PubMed  Google Scholar 

  • Mundy GR, Guise TA. Hormonal control of calcium homeostasis. Clin Chem, 45(8 Pt 2): 1347–1352, 1999

    PubMed  CAS  Google Scholar 

  • Heaney RP, Recker RR, Saville PD. Menopausal changes in calcium balance performance. J Lab Clin Med, 92(6): 953–963, 1978

    PubMed  CAS  Google Scholar 

  • Dawson-Hughes B, Jacques P, Shipp C. Dietary calcium intake and bone loss from the spine in healthy postmenopausal women. Am J Clin Nutr, 46(4): 685–687, 1987

    PubMed  CAS  Google Scholar 

  • Rodriguez-Martinez MA, Garcia-Cohen EC. Role of Ca(2+) and vitamin D in the prevention and treatment of osteoporosis. Pharmacol Ther 93(1): 37–49, 2002

    Article  PubMed  CAS  Google Scholar 

  • Angus RM, Pocock NA, Eisman JA. Nutritional intake of pre- and postmenopausal Australian women with special reference to calcium. Eur J Clin Nutr, 42(7): 617–625, 1988

    PubMed  CAS  Google Scholar 

  • Cifuentes M, Riedt CS, Brolin RE, et al. Weight loss and calcium intake influence calcium absorption in overweight postmenopausal women. Am J Clin Nutr, 80(1): 123–130, 2004

    PubMed  CAS  Google Scholar 

  • Riedt CS, Cifuentes M, Stahl T, et al. Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J Bone Miner Res, 20(3): 455–463, 2005

    Article  PubMed  CAS  Google Scholar 

  • Dawson-Hughes B, Dallal GE, Krall EA, et al. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med, 323(13): 878–883, 1990

    PubMed  CAS  Google Scholar 

  • Heller HJ, Greer LG, Haynes SD, et al. Pharmacokinetic and pharmacodynamic comparison of two calcium supplements in postmenopausal women. J Clin Pharmacol, 40(11): 1237–1244, 2000

    PubMed  CAS  Google Scholar 

  • Recker RR, Calcium absorption and achlorhydria. N Engl J Med, 313(2): 70–73, 1985

    PubMed  CAS  Google Scholar 

  • Sheikh MS, Santa Ana CA, Nicar MJ, et al. Gastrointestinal absorption of calcium from milk and calcium salts. N Engl J Med, 317(9): 532–536, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cook JD, Dassenko SA, Whittaker P. Calcium supplementation: effect on iron absorption. Am J Clin Nutr, 53(1): 106–111, 1991

    PubMed  CAS  Google Scholar 

  • Recker RR, Hinders S, Davies KM, et al. Correcting calcium nutritional deficiency prevents spine fractures in elderly women. J Bone Miner Res, 11(12): 1961–1966, 1996

    Article  PubMed  CAS  Google Scholar 

  • Reid IR, Ames RW, Evans MC, et al. Long-term effects of calcium supplementation on bone loss and fractures in postmenopausal women: a randomized controlled trial. Am J Med, 98(4): 331–335, 1995

    Article  PubMed  CAS  Google Scholar 

  • Reid IR, Mason B, Horne A, et al. Randomized controlled trial of calcium in healthy older women. Am J Med, 119(9): 777–785, 2006

    Article  PubMed  CAS  Google Scholar 

  • Reid IR, Ames RW, Evans MC, et al. Effect of calcium supplementation on bone loss in postmenopausal women. N Engl J Med, 328(7): 460–464, 1993

    Article  PubMed  CAS  Google Scholar 

  • Tang BM, Eslick GD, Nowson C, et al. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet, 370(9588): 657–666, 2007

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA. The use of calcium in the management of osteoporosis. Bone, 24(4): 279–290, 1999

    Article  PubMed  CAS  Google Scholar 

  • Mackerras D, Lumley T. First- and second-year effects in trials of calcium supplementation on the loss of bone density in postmenopausal women. Bone, 21(6): 527–533, 1997

    Article  PubMed  CAS  Google Scholar 

  • Key TJ, Appleby PN, Spencer EA, et al. Calcium, diet and fracture risk: a prospective study of 1898 incident fractures among 34 696 British women and men. Public Health Nutr, 10: 1314–1320, 2007

    Article  PubMed  Google Scholar 

  • Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev, 23(4): 552–559, 2002

    Article  PubMed  CAS  Google Scholar 

  • Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res, 19(3): 370–378, 2004

    Article  PubMed  CAS  Google Scholar 

  • Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med, 337(10): 670–676, 1997

    Article  PubMed  CAS  Google Scholar 

  • Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med, 327(23): 1637–1642, 1992

    PubMed  CAS  Google Scholar 

  • Cumming RG, Nevitt MC. Calcium for prevention of osteoporotic fractures in postmenopausal women. J Bone Miner Res, 12(9): 1321–1329, 1997

    Article  PubMed  CAS  Google Scholar 

  • Prince RL, Devine A, Dhaliwal SS, et al. Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Arch Intern Med, 166(8): 869–875, 2006

    Article  PubMed  CAS  Google Scholar 

  • Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet. 365(9471): 1621–1628, 2005

    Article  PubMed  CAS  Google Scholar 

  • Porthouse J, Cockayne S, King C, et al. Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ, 330(7498): 1003, 2005

    Article  PubMed  CAS  Google Scholar 

  • Shea B, Wells G, Cranney A, et al. Calcium supplementation on bone loss in postmenopausal women. Cochrane Database Syst Rev, (1): CD004526, 2004

  • Reid IR. The roles of calcium and vitamin D in the prevention of osteoporosis. Endocrinol Metab Clin North Am, 27(2): 389–398, 1998

    Article  PubMed  CAS  Google Scholar 

  • Cumming RG, Cummings SR, Nevitt MC, et al. Calcium intake and fracture risk: results from the study of osteoporotic fractures. Am J Epidemiol, 145(10): 926–934, 1997

    PubMed  CAS  Google Scholar 

  • Keine Autoren angegeben: The role of calcium in peri- and postmenopausal women: consensus opinion of The North American Menopause Society. Menopause, 8(2): 84–95, 2001

  • Whiting SJ, Wood RJ. Adverse effects of high-calcium diets in humans. Nutr Rev, 55(1 Pt 1): 1–9, 1997

    PubMed  CAS  Google Scholar 

  • Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med, 354(7): 669–683, 2006

    Article  PubMed  CAS  Google Scholar 

  • Curhan GC, Willett WC, Speizer FE, et al. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med, 126(7): 497–504, 1997

    PubMed  CAS  Google Scholar 

  • Bolland MJ, Barber PA, Doughty RN, et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ, 336(7638): 262–266, 2008

    Article  PubMed  CAS  Google Scholar 

  • Eisman JA. Vitamin D metabolism. In: Mundy GR, Martin, TJ, (eds) Physiology and pharmacology of bone. Springer Verlag, New York–Berlin–Heidelberg, 333–375, 1993

    Google Scholar 

  • Norman AW. Receptors for 1alpha,25(OH)2D3: past, present, and future. J Bone Miner Res, 13(9): 1360–1369, 1998

    Article  PubMed  CAS  Google Scholar 

  • Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev, 22(4): 477–501, 2001

    Article  PubMed  CAS  Google Scholar 

  • McKenna MJ, Freaney R. Secondary hyperparathyroidism in the elderly: means to defining hypovitaminosis D. Osteoporos Int, 8(Suppl 2): S3–S6, 1998

    PubMed  CAS  Google Scholar 

  • Kudlacek S, Schneider B, Peterlik M, et al. Assessment of vitamin D and calcium status in healthy adult Austrians. Eur J Clin Invest, 33(4): 323–331, 2003

    Article  PubMed  CAS  Google Scholar 

  • Jackson C, Gaugris S, Sen SS, et al. The effect of cholecalciferol (vitamin D3) on the risk of fall and fracture: a meta-analysis. QJM, 100(4): 185–192, 2007

    Article  PubMed  CAS  Google Scholar 

  • Avenell A, Gillespie WJ, Gillespie LD, et al. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev, (3): CD000227, 2005

  • LeBoff MS, Kohlmeier L, Hurwitz S, et al. Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA, 281(16): 1505–1511, 1999

    Article  PubMed  CAS  Google Scholar 

  • Standing Committee on the Scientific Evaluation of Dietary Reference Intakes FaNB, Institute of Medicine: Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press, Washington DC, p 448, 1997

  • Keine Autoren angegeben, Management of postmenopausal osteoporosis: position statement of the North American Menopause Society. Menopause, 9(2): 84–101, 2002

  • Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA, 293(18): 2257–2264, 2005

    Article  PubMed  CAS  Google Scholar 

  • Dawson-Hughes B, Harris SS, Krall EA, et al. Rates of bone loss in postmenopausal women randomly assigned to one of two dosages of vitamin D. Am J Clin Nutr, 61(5): 1140–1145, 1995

    PubMed  CAS  Google Scholar 

  • Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture with vitamin d supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab, 92(4): 1415–1423, 2007

    Article  PubMed  CAS  Google Scholar 

  • Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med, 116(9): 634–639, 2004

    Article  PubMed  CAS  Google Scholar 

  • Villareal DT, Civitelli R, Chines A, et al. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab, 72(3): 628–634, 1991

    PubMed  CAS  Google Scholar 

  • Dawson-Hughes B, Dallal GE, Krall EA, et al. Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann Intern Med, 115(7): 505–512, 1991

    PubMed  CAS  Google Scholar 

  • Janssen HC, Samson MM, Verhaar HJ. Vitamin D deficiency, muscle function, and falls in elderly people. Am J Clin Nutr, 75(4): 611–615, 2002

    PubMed  CAS  Google Scholar 

  • Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int, 13(3): 187–194, 2002

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer M, Begerow B, Minne HW, et al. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J Bone Miner Res, 15(6): 1113–1118, 2000

    Article  PubMed  CAS  Google Scholar 

  • Lips P, Graafmans WC, Ooms ME, et al. Vitamin D supplementation and fracture incidence in elderly persons. A randomized, placebo-controlled clinical trial. Ann Intern Med, 124(4): 400–406, 1996

    PubMed  CAS  Google Scholar 

  • Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ, 326(7387): 469, 2003

    Article  PubMed  CAS  Google Scholar 

  • Adams JS, Lee G. Gains in bone mineral density with resolution of vitamin D intoxication. Ann Intern Med, 127(3): 203–206, 1997

    PubMed  CAS  Google Scholar 

  • Schwartzman MS, Franck WA. Vitamin D toxicity complicating the treatment of senile, postmenopausal, and glucocorticoid-induced osteoporosis. Four case reports and a critical commentary on the use of vitamin D in these disorders. Am J Med, 82(2): 224–230, 1987

    Article  PubMed  CAS  Google Scholar 

  • Galesanu C, Ciubotariu C, Melnic G, et al. Postmenopausal osteoporosis. Digital Rx radiogrammetry in the diagnosis and follow-up of treatment with alfacalcidol. Rev Med Chir Soc Med Nat Iasi, 110(4): 833–841, 2006

    PubMed  Google Scholar 

  • Iwamoto J, Takeda T, Ichimura S, et al. Effects of cyclical etidronate with alfacalcidol on lumbar bone mineral density, bone resorption, and back pain in postmenopausal women with osteoporosis. J Orthop Sci, 8(4): 532–537, 2003

    Article  PubMed  Google Scholar 

  • Iwamoto J, Takeda T, Ichimura S, et al. Effects of 5-year treatment with elcatonin and alfacalcidol on lumbar bone mineral density and the incidence of vertebral fractures in postmenopausal women with osteoporosis: a retrospective study. J Orthop Sci, 7(6): 637–643, 2002

    Article  PubMed  CAS  Google Scholar 

  • Mizunuma H, Shiraki M, Shintani M, et al. Randomized trial comparing low-dose hormone replacement therapy and HRT plus 1alpha-OH-vitamin D3 (alfacalcidol) for treatment of postmenopausal bone loss. J Bone Miner Metab, 24(1): 11–15, 2006

    Article  PubMed  CAS  Google Scholar 

  • Nuti R, Bianchi G, Brandi ML, et al. Superiority of alfacalcidol compared to vitamin D plus calcium in lumbar bone mineral density in postmenopausal osteoporosis. Rheumatol Int, 26(5): 445–453, 2006

    Article  PubMed  CAS  Google Scholar 

  • Ringe JD, Farahmand P, Schacht E, et al. Superiority of a combined treatment of Alendronate and Alfacalcidol compared to the combination of Alendronate and plain vitamin D or Alfacalcidol alone in established postmenopausal or male osteoporosis (AAC-Trial). Rheumatol Int, 2007

  • Shikari M, Kushida K, Yamazaki K, et al. Effects of 2 years' treatment of osteoporosis with 1 alpha-hydroxy vitamin D3 on bone mineral density and incidence of fracture: a placebo-controlled, double-blind prospective study. Endocr J, 43(2): 211–220, 1996

    Article  PubMed  CAS  Google Scholar 

  • Richy F, Ethgen O, Bruyere O, et al. Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int, 15(4): 301–310, 2004

    Article  PubMed  CAS  Google Scholar 

  • Richy F, Deroisy R, Lecart MP, et al. D-hormone analog alfacalcidol: an update on its role in post-menopausal osteoporosis and rheumatoid arthritis management. Aging Clin Exp Res, 17(2): 133–142, 2005

    PubMed  CAS  Google Scholar 

  • Schacht E, Richy F, Reginster JY. The therapeutic effects of alfacalcidol on bone strength, muscle metabolism and prevention of falls and fractures. J Musculoskelet Neuronal Interact, 5(3): 273–284, 2005

    PubMed  CAS  Google Scholar 

  • Heikinheimo RJ, Inkovaara JA, Harju EJ, et al. Annual injection of vitamin D and fractures of aged bones. Calcif Tissue Int, 51(2): 105–110, 1992

    Article  PubMed  CAS  Google Scholar 

  • Mastaglia SR, Mautalen CA, Parisi MS, et al. Vitamin D2 dose required to rapidly increase 25OHD levels in osteoporotic women. Eur J Clin Nutr, 60(5): 681–687, 2006

    Article  PubMed  CAS  Google Scholar 

  • Francis RM, Boyle IT, Moniz C, et al. A comparison of the effects of alfacalcidol treatment and vitamin D2 supplementation on calcium absorption in elderly women with vertebral fractures. Osteoporos Int, 6(4): 284–290, 1996

    Article  PubMed  CAS  Google Scholar 

  • Lyons RA, Johansen A, Brophy S, et al. Preventing fractures among older people living in institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D supplementation. Osteoporos Int, 18(6): 811–818, 2007

    Article  PubMed  CAS  Google Scholar 

  • Aloia JF, Cohn SH, Vaswani A, et al. Risk factors for postmenopausal osteoporosis. Am J Med, 78(1): 95–100, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lund B, Sorensen OH, Agner E. Serum 1,25-dihydroxyvitamin D in normal subjects and in patients with postmenopausal osteopenia. Influence of age, renal function and oestrogen therapy. Horm Metab Res, 14(5): 271–274, 1982

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Nelson KI. Effect of long term treatment with calcitriol on calcium absorption and mineral metabolism in postmenopausal osteoporosis. J Clin Endocrinol Metab, 61(3): 457–461, 1985

    PubMed  CAS  Google Scholar 

  • Zerwekh JE, Sakhaee K, Pak CY. Short-term 1,25-dihydroxyvitamin D3 administration raises serum osteocalcin in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab, 60(3): 615–617, 1985

    PubMed  CAS  Google Scholar 

  • Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest, 64(3): 729–736, 1979

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JC, Jerpbak CM, Jee WS, et al. 1,25-Dihydroxyvitamin D3: short- and long-term effects on bone and calcium metabolism in patients with postmenopausal osteoporosis. Proc Natl Acad Sci U S A, 79(10): 3325–3329, 1982

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JC, Goldgar D. Treatment of postmenopausal osteoporosis with high doses of synthetic calcitriol. A randomized controlled study. Ann Intern Med, 113(9): 649–655, 1990

    PubMed  CAS  Google Scholar 

  • Aloia JF, Vaswani A, Yeh JK, et al. Calcitriol in the treatment of postmenopausal osteoporosis. Am J Med, 84(3 Pt 1): 401–408, 1988

    Article  PubMed  CAS  Google Scholar 

  • Jensen GF, Christiansen C, Transbol I. Treatment of post menopausal osteoporosis. A controlled therapeutic trial comparing oestrogen/gestagen, 1,25-dihydroxy-vitamin D3 and calcium. Clin Endocrinol (Oxf), 16(5): 515–524, 1982

    Article  CAS  Google Scholar 

  • Gallagher JC, Fowler SE, Detter JR, et al. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J Clin Endocrinol Metab, 86(8): 3618–3628, 2001

    Article  PubMed  CAS  Google Scholar 

  • Tilyard MW, Spears GF, Thomson J, et al. Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med, 326(6): 357–362, 1992

    PubMed  CAS  Google Scholar 

  • Ott SM, Chesnut CH. 3rd: Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med, 110(4): 267–274, 1989

    PubMed  CAS  Google Scholar 

  • Chapuy MC, Arlot ME, Delmas PD, et al. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ, 308(6936): 1081–1082, 1994

    PubMed  CAS  Google Scholar 

  • Chapuy MC, Pamphile R, Paris E, et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos Int, 13(3): 257–264, 2002

    Article  PubMed  CAS  Google Scholar 

  • Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone, 25(1): 97–106, 1999

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H. Bisphosphonate bei Knochenerkrankungen. Bern–Göttingen–Toronto: Verlag Hans Huber, 1998

  • Bartl R. Bisphosphonate. In: Bartl R, Dietzfelbinger H (eds) Multiples myelom. Tumorzentrum München, München, pp 146–158, 2002

    Google Scholar 

  • Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA, 96(1): 133–138, 1999

    Article  PubMed  CAS  Google Scholar 

  • Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin Ther, 23(8): 1296–1310, 2001

    Article  PubMed  CAS  Google Scholar 

  • Blumel JE, Castelo-Branco C, de la Cuadra G, et al. Alendronate daily, weekly in conventional tablets and weekly in enteric tablets: preliminary study on the effects in bone turnover markers and incidence of side effects. J Obstet Gynaecol, 23(3): 278–281, 2003

    Article  PubMed  CAS  Google Scholar 

  • Devogelaer JP, Broll H, Correa-Rotter R, et al. Oral alendronate induces progressive increases in bone mass of the spine, hip, and total body over 3 years in postmenopausal women with osteoporosis. Bone, 18(2): 141–150, 1996

    Article  PubMed  CAS  Google Scholar 

  • Felsenberg D, Alenfeld F, Bock O, et al. Placebo-controlled multicenter study of oral alendronate in postmenopausal osteoporotic women. FOSIT-Study-Group. Fosamax International Trial. Maturitas, 31(1): 35–44, 1998

    Article  PubMed  CAS  Google Scholar 

  • Hosking D, Chilvers CE, Christiansen C, et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early Postmenopausal Intervention Cohort Study Group. N Engl J Med 338(8): 485–492, 1998

    Article  PubMed  CAS  Google Scholar 

  • Liberman UA, Weiss SR, Broll J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med, 333(22): 1437–1443, 1995

    Article  PubMed  CAS  Google Scholar 

  • Pols HA, Felsenberg D, Hanley DA, et al. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int, 9(5): 461–468, 1999

    Article  PubMed  CAS  Google Scholar 

  • Chesnut CH 3rd, McClung MR, Ensrud KE, et al. Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodeling. Am J Med, 99(2): 144–152, 1995

    Article  PubMed  CAS  Google Scholar 

  • Cranney A, Wells G, Willan A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev, 23(4): 508–516, 2002

    Article  PubMed  CAS  Google Scholar 

  • Liberman UA, Hochberg MC, Geusens P, et al. Hip and non-spine fracture risk reductions differ among antiresorptive agents: evidence from randomised controlled trials. Int J Clin Pract, 60(11): 1394–1400, 2006

    Article  PubMed  CAS  Google Scholar 

  • Tonino RP, Meunier PJ, Emkey R, et al. Skeletal benefits of alendronate: 7-year treatment of postmenopausal osteoporotic women. Phase III Osteoporosis Treatment Study Group. J Clin Endocrinol Metab, 85(9): 3109–3115, 2000

    Article  PubMed  CAS  Google Scholar 

  • Bone HG, Hosking D, Devogelaer JP, et al. Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med, 350(12): 1189–1199, 2004

    Article  PubMed  CAS  Google Scholar 

  • Bagger YZ, Tanko LB, Alexandersen P, et al. Alendronate has a residual effect on bone mass in postmenopausal Danish women up to 7 years after treatment withdrawal. Bone, 33(3): 301–307, 2003

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli R, Greenspan SL, Bone G 3rd, et al. Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res, 17(11): 1988–1996, 2002

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer T, Bone HG, Crepaldi G, et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging (Milano), 12(1): 1–12, 2000

    CAS  Google Scholar 

  • Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet, 348(9041): 1535–1541, 1996

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab, 85(11): 4118–4124, 2000

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Black DM. Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA, 280(24): 2077–2082, 1998

    Article  PubMed  CAS  Google Scholar 

  • Ensrud KE, Black DM, Palermo L, et al. Treatment with alendronate prevents fractures in women at highest risk: results from the Fracture Intervention Trial. Arch Intern Med, 157(22): 2617-2624, 1997

    Article  PubMed  CAS  Google Scholar 

  • Karpf DB, Shapiro DR, Seeman E, et al. Prevention of nonvertebral fractures by alendronate. A meta-analysis. Alendronate Osteoporosis Treatment Study Groups. JAMA, 277(14): 1159–1164, 1997

    Article  PubMed  CAS  Google Scholar 

  • Lowe CE, Depew WT, Vanner SJ, et al. Upper gastrointestinal toxicity of alendronate. Am J Gastroenterol, 95(3): 634–640, 2000

    Article  PubMed  CAS  Google Scholar 

  • Baker DE. Alendronate and risedronate: what you need to know about their upper gastrointestinal tract toxicity. Rev Gastroenterol Disord, 2(1): 20–33, 2002

    PubMed  Google Scholar 

  • Ravn P, Weiss SR, Rodriguez-Portales JA, et al. Alendronate in early postmenopausal women: effects on bone mass during long-term treatment and after withdrawal. Alendronate Osteoporosis Prevention Study Group. J Clin Endocrinol Metab, 85(4): 1492–1497, 2000

    Article  PubMed  CAS  Google Scholar 

  • Stock JL, Bell NH, Chesnut CH, 3rd, et al. Increments in bone mineral density of the lumbar spine and hip and suppression of bone turnover are maintained after discontinuation of alendronate in postmenopausal women. Am J Med, 103(4): 291–297, 1997

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA, 296(24): 2927–2938, 2006

    Article  PubMed  CAS  Google Scholar 

  • Api M. Are we treating women with postmenopausal osteoporosis for their low BMD or high fracture risk? J Bone Miner Res, 20(8):1480–1481, 2005

    Article  PubMed  Google Scholar 

  • Halasy-Nagy JM, Rodan GA, Reszka AA. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone, 29(6): 553–559, 2001

    Article  PubMed  CAS  Google Scholar 

  • Brown JP, Kendler DL, McClung MR, et al. The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int, 71(2): 103–111, 2002

    Article  PubMed  CAS  Google Scholar 

  • Harris ST, Watts NB, Li Z, et al. Two-year efficacy and tolerability of risedronate once a week for the treatment of women with postmenopausal osteoporosis. Curr Med Res Opin, 20(5): 757–764, 2004

    Article  PubMed  CAS  Google Scholar 

  • Cranney A, Tugwell P, Adachi J, et al. Meta-analyses of therapies for postmenopausal osteoporosis. III. Meta-analysis of risedronate for the treatment of postmenopausal osteoporosis. Endocr Rev, 23(4): 517–523, 2002

    Article  PubMed  CAS  Google Scholar 

  • Heaney RP, Zizic TM, Fogelman I, et al. Risedronate reduces the risk of first vertebral fracture in osteoporotic women. Osteoporos Int, 13(6): 501–505, 2002

    Article  PubMed  CAS  Google Scholar 

  • Mortensen L, Charles P, Bekker PJ, et al. Risedronate increases bone mass in an early postmenopausal population: two years of treatment plus one year of follow-up. J Clin Endocrinol Metab, 83(2): 396–402, 1998

    Article  PubMed  CAS  Google Scholar 

  • Fogelman I, Ribot C, Smith R, et al. Risedronate reverses bone loss in postmenopausal women with low bone mass: results from a multinational, double-blind, placebo-controlled trial. BMD-MN Study Group. J Clin Endocrinol Metab, 85(5): 1895–1900, 2000

    Article  PubMed  CAS  Google Scholar 

  • Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA, 282(14): 1344–1352, 1999

    Article  PubMed  CAS  Google Scholar 

  • Reginster J, Minne HW, Sorensen OH, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int, 11(1): 83–91, 2000

    Article  PubMed  CAS  Google Scholar 

  • Adachi JD, Rizzoli R, Boonen S, et al. Vertebral fracture risk reduction with risedronate in post-menopausal women with osteoporosis: a meta-analysis of individual patient data. Aging Clin Exp Res, 17(2): 150–156, 2005

    PubMed  CAS  Google Scholar 

  • Sorensen OH, Crawford GM, Mulder H, et al. Long-term efficacy of risedronate: a 5-year placebo-controlled clinical experience. Bone, 32(2): 120–126, 2003

    Article  PubMed  CAS  Google Scholar 

  • McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med, 344(5): 333–340, 2001

    Article  PubMed  CAS  Google Scholar 

  • Taggart H, Bolognese MA, Lindsay R, et al. Upper gastrointestinal tract safety of risedronate: a pooled analysis of 9 clinical trials. Mayo Clin Proc, 77(3): 262–270, 2002

    Article  PubMed  CAS  Google Scholar 

  • Mellstrom DD, Sorensen OH, Goemaere S, et al. Seven years of treatment with risedronate in women with postmenopausal osteoporosis. Calcif Tissue Int, 75(6): 462–468, 2004

    Article  PubMed  CAS  Google Scholar 

  • Rosen CJ, Hochberg MC, Bonnick SL, et al. Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res, 20(1): 141–151, 2005

    Article  PubMed  CAS  Google Scholar 

  • Bonnick S, Saag KG, Kiel DP, et al. Comparison of weekly treatment of postmenopausal osteoporosis with alendronate versus risedronate over two years. J Clin Endocrinol Metab, 91(7): 2631–2637, 2006

    Article  PubMed  CAS  Google Scholar 

  • Silverman SL, Watts NB, Delmas PD, et al. Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: the risedronate and alendronate (REAL) cohort study. Osteoporos Int, 18(1): 25–34, 2007

    Article  PubMed  CAS  Google Scholar 

  • Lanza FL, Hunt RH, Thomson AB, et al. Endoscopic comparison of esophageal and gastroduodenal effects of risedronate and alendronate in postmenopausal women. Gastroenterology, 119(3): 631–638, 2000

    Article  PubMed  CAS  Google Scholar 

  • Thomson AB, Marshall JK, Hunt RH, et al. 14 day endoscopy study comparing risedronate and alendronate in postmenopausal women stratified by Helicobacter pylori status. J Rheumatol, 29(9): 1965–1974, 2002

    PubMed  CAS  Google Scholar 

  • Lanza F, Schwartz H, Sahba B, et al. An endoscopic comparison of the effects of alendronate and risedronate on upper gastrointestinal mucosae. Am J Gastroenterol, 95(11): 3112–3117, 2000

    Article  PubMed  CAS  Google Scholar 

  • Adami S, Zamberlan N: Adverse effects of bisphosphonates. A comparative review. Drug Saf, 14(3): 158–170, 1996

    Article  PubMed  CAS  Google Scholar 

  • Gibbs CJ, Aaron JE, Peacock M. Osteomalacia in Paget's disease treated with short term, high dose sodium etidronate. Br Med J (Clin Res Ed) 292(6530): 1227–1229, 1986

    Article  CAS  Google Scholar 

  • Fujita T, Orimo H, Inoue T, et al. Clinical effect of bisphosphonate and vitamin D on osteoporosis: reappraisal of a multicenter double-blind clinical trial comparing etidronate and alfacalcidol. J Bone Miner Metab, 25(2): 130–137, 2007

    Article  PubMed  CAS  Google Scholar 

  • Cranney A, Guyatt G, Krolicki N, et al. A meta-analysis of etidronate for the treatment of postmenopausal osteoporosis. Osteoporos Int, 12(2): 140–151, 2001

    Article  PubMed  CAS  Google Scholar 

  • Cranney A, Welch V, Adachi JD, et al. Etidronate for treating and preventing postmenopausal osteoporosis. Cochrane Database Syst Rev, (4): CD003376, 2001

  • Harris ST, Watts NB, Jackson RD, et al. Four-year study of intermittent cyclic etidronate treatment of postmenopausal osteoporosis: three years of blinded therapy followed by one year of open therapy. Am J Med, 95(6): 557–567, 1993

    Article  PubMed  CAS  Google Scholar 

  • Storm T, Kollerup G, Thamsborg G, et al. Five years of clinical experience with intermittent cyclical etidronate for postmenopausal osteoporosis. J Rheumatol, 23(9): 1560–1564, 1996

    PubMed  CAS  Google Scholar 

  • Storm T, Thamsborg G, Steiniche T, et al. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med, 322(18): 1265–1271, 1990

    Article  PubMed  CAS  Google Scholar 

  • Watts NB, Harris ST, Genant HK, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med, 323(2): 73–79, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Kawai S. Comparative efficacy of hormone replacement therapy, etidronate, calcitonin, alfacalcidol, and vitamin K in postmenopausal women with osteoporosis: The Yamaguchi Osteoporosis Prevention Study. Am J Med, 117(8): 549–555, 2004

    Article  PubMed  CAS  Google Scholar 

  • Ringe JD, Dorst A, Faber H, et al. Efficacy of etidronate and sequential monofluorophosphate in severe postmenopausal osteoporosis: a pilot study. Rheumatol Int, 25(4): 296–300, 2005

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Recker RR, Chesnut CH 3rd, et al. Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos Int, 15(10): 792–798, 2004

    Article  PubMed  CAS  Google Scholar 

  • Chesnut IC, Skag A, Christiansen C, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res, 19(8): 1241–1249, 2004

    Article  CAS  Google Scholar 

  • Chesnut CH, Ettinger MP, Miller PD, et al. Ibandronate produces significant, similar antifracture efficacy in North American and European women: new clinical findings from BONE. Curr Med Res Opin, 21(3): 391–401, 2005

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY, Adami S, Lakatos P, et al. Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann Rheum Dis, 65(5): 654–661, 2006

    Article  PubMed  CAS  Google Scholar 

  • Eisman JA, Civitelli R, Adami S, et al. Efficacy and tolerability of intravenous ibandronate injections in postmenopausal osteoporosis: 2-year results from the DIVA study. J Rheumatol, 35(3): 488–497, 2008

    PubMed  CAS  Google Scholar 

  • Harris ST, Blumentals WA, Miller PD. Ibandronate and the risk of non-vertebral and clinical fractures in women with postmenopausal osteoporosis: results of a meta-analysis of phase III studies. Curr Med Res Opin, 24(1): 237–245, 2008

    Article  PubMed  CAS  Google Scholar 

  • Recker R, Stakkestad JA, Chesnut CH 3rd, et al. Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in postmenopausal osteoporosis. Bone, 34(5): 890–899, 2004

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Adami S, Strugala C, et al. Intravenous ibandronate injections in postmenopausal women with osteoporosis: one-year results from the dosing intravenous administration study. Arthritis Rheum, 54(6): 1838–1846, 2006

    Article  PubMed  CAS  Google Scholar 

  • Reid IR, Brown JP, Burckhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med, 346(9): 653–661, 2002

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med, 356(18): 1809–1822, 2007

    Article  PubMed  CAS  Google Scholar 

  • Lyles KW, Colon-Emeric CS, Magaziner JS, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med, 357(18): 1799–1809, 2007

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Schwartz AV, Black DM. Alendronate and atrial fibrillation. N Engl J Med, 356(18): 1895–1896, 2007

    Article  PubMed  CAS  Google Scholar 

  • Sorensen HT, Christensen S, Mehnert F, et al. Use of bisphosphonates among women and risk of atrial fibrillation and flutter: population based case-control study. BMJ, 336(7648): 813–816, 2008

    Article  PubMed  Google Scholar 

  • Marx RE, Stern D. Oral and maxillofacial pathology: a rationale for treatment. Quintessence Publishing, 2002

  • Rizzoli R, Burlet N, Cahall D, et al. Osteonecrosis of the jaw and bisphosphonate treatment for osteoporosis. Bone, 42(5): 841–847, 2008

    Article  PubMed  CAS  Google Scholar 

  • Mitlak BH, Cohen FJ. Selective estrogen receptor modulators: a look ahead. Drugs, 57(5): 653–663, 1999

    Article  PubMed  CAS  Google Scholar 

  • Khovidhunkit W, Shoback DM. Clinical effects of raloxifene hydrochloride in women. Ann Intern Med, 130(5): 431–439, 1999

    PubMed  CAS  Google Scholar 

  • Cosman F, Lindsay R. Selective estrogen receptor modulators: clinical spectrum. Endocr Rev, 20(3): 418–434, 1999

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Hartmann LC. Selective estrogen-receptor modulators -- mechanisms of action and application to clinical practice. N Engl J Med, 348(7): 618–629, 2003

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med, 337(23): 1641–1647, 1997

    Article  PubMed  CAS  Google Scholar 

  • Johnston CC Jr, Bjarnason NH, Cohen FJ, et al. Long-term effects of raloxifene on bone mineral density, bone turnover, and serum lipid levels in early postmenopausal women: three-year data from 2 double-blind, randomized, placebo-controlled trials. Arch Intern Med, 160(22): 3444–3450, 2000

    Article  PubMed  CAS  Google Scholar 

  • Siris ES, Harris ST, Eastell R, et al. Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J Bone Miner Res, 20(9): 1514–1524, 2005

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Eckert S, Krueger KA, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA, 281(23): 2189–2197, 1999

    Article  PubMed  CAS  Google Scholar 

  • Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA, 282(7): 637–645, 1999

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Ensrud KE, Adachi JD, et al. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab, 87(8): 3609–3617, 2002

    Article  PubMed  CAS  Google Scholar 

  • Maricic M, Adachi JD, Sarkar S, et al. Early effects of raloxifene on clinical vertebral fractures at 12 months in postmenopausal women with osteoporosis. Arch Intern Med, 162(10): 1140–1143, 2002

    Article  PubMed  CAS  Google Scholar 

  • Keine Autoren angegeben. SERM for early osteoporosis therapy. Risk for first spinal fracture reduced to half. MMW Fortschr Med, 145(22): 57, 2003

  • Kanis JA, Johnell O, Black DM, et al. Effect of raloxifene on the risk of new vertebral fracture in postmenopausal women with osteopenia or osteoporosis: a reanalysis of the Multiple Outcomes of Raloxifene Evaluation trial. Bone, 33(3): 293–300, 2003

    Article  PubMed  CAS  Google Scholar 

  • Johnell O, Kanis JA, Black DM, et al. Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res, 19(5): 764–772, 2004

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone, 33(4): 522–532, 2003

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Connor E, Grady D, Sashegyi A, et al. Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA, 287(7): 847–857, 2002

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal RS, Baranowski B, Dowsett SA. Cardiovascular effects of raloxifene: the arterial and venous systems. Am Heart J, 147(5): 783–789, 2004

    Article  PubMed  CAS  Google Scholar 

  • Mijatovic V, van der Mooren MJ, Kenemans P, et al. Raloxifene lowers serum lipoprotein(A) in healthy postmenopausal women: a randomized, double-blind, placebo-controlled comparison with conjugated equine estrogens. Menopause, 6(2): 134–137, 1999

    Article  PubMed  CAS  Google Scholar 

  • Walsh BW, Kuller LH, Wild RA, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA, 279(18): 1445–1451, 1998

    Article  PubMed  CAS  Google Scholar 

  • Walsh BW, Paul S, Wild RA, et al. The effects of hormone replacement therapy and raloxifene on C-reactive protein and homocysteine in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab, 85(1): 214–218, 2000

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Connor E, Mosca L, Collins P, et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med, 355(2): 125–137, 2006

    Article  PubMed  CAS  Google Scholar 

  • Neele SJ, Evertz R, De Valk-De Roo G, et al. Effect of 1 year of discontinuation of raloxifene or estrogen therapy on bone mineral density after 5 years of treatment in healthy postmenopausal women. Bone, 30(4): 599–603, 2002

    Article  PubMed  CAS  Google Scholar 

  • Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology, 136(8): 3632–3638, 1995

    Article  PubMed  CAS  Google Scholar 

  • Schmidt IU, Dobnig H, Turner RT. Intermittent parathyroid hormone treatment increases osteoblast number, steady state messenger ribonucleic acid levels for osteocalcin, and bone formation in tibial metaphysis of hypophysectomized female rats. Endocrinology, 136(11): 5127–5134, 1995

    Article  PubMed  CAS  Google Scholar 

  • Jerome CP, Burr DB, Van Bibber T, et al. Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone, 28(2): 150–159, 2001

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Zhou H, Cosman F, et al. Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res, 22(4): 495–502, 2007

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM. Parathyroid hormone and periosteal bone expansion. J Bone Miner Res, 17(10): 1741–1743, 2002

    Article  PubMed  CAS  Google Scholar 

  • Zanchetta JR, Bogado CE, Ferretti JL, et al. Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res, 18(3): 539–543, 2003

    Article  PubMed  CAS  Google Scholar 

  • Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev, 26(5): 688–703, 2005

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Miller PD, Delmas PD, et al. Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res, 21(11): 1785–1790, 2006

    Article  PubMed  CAS  Google Scholar 

  • Marcus R, Wang O, Satterwhite J, et al. The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res, 18(1): 18–23, 2003

    Article  PubMed  CAS  Google Scholar 

  • Body JJ, Gaich GA, Scheele WH, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab, 87(10): 4528–4535, 2002

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Scheele WH, Neer R, et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med, 164(18): 2024–2030, 2004

    Article  PubMed  Google Scholar 

  • Prince R, Sipos A, Hossain A, et al. Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res, 20(9): 1507–1513, 2005

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med, 353(6): 555–565, 2005

    Article  PubMed  CAS  Google Scholar 

  • Greenspan SL, Bone HG, Ettinger MP, et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med, 146(5): 326–339, 2007

    PubMed  Google Scholar 

  • Hodsman AB, Hanley DA, Ettinger MP, et al. Efficacy and safety of human parathyroid hormone-(1–84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab, 88(11): 5212–5220, 2003

    Article  PubMed  CAS  Google Scholar 

  • Rittmaster RS, Bolognese M, Ettinger MP, et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab, 85(6): 2129–2134, 2000

    Article  PubMed  CAS  Google Scholar 

  • Shorr E, Carter AC. The usefulness of strontium as an adjuvant to Kalzium in the remineralization of the skeleton in man. Bull Hosp Jt Dis Orthop Inst, 13: 59–66, 1952

    CAS  Google Scholar 

  • Dimai HP. Strontium ranelate: a novel concept for the treatment of osteoporosis. Wien Klin Wochenschr, 117(21–22): 728–738, 2005

    Article  PubMed  CAS  Google Scholar 

  • Skoryna SC. Effects of oral supplementation with stable strontium. Can Med Assoc J, 125(7): 703–712, 1981

    PubMed  CAS  Google Scholar 

  • Reginster JY, Deroisy R, Jupsin I. Strontium ranelate: a new paradigm in the treatment of osteoporosis. Drugs Today (Barc), 39(2): 89–101, 2003

    Article  CAS  Google Scholar 

  • Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med, 350(5): 459–468, 2004

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY, Seeman E, De Vernejoul MC, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab, 90(5): 2816–2822, 2005

    Article  PubMed  CAS  Google Scholar 

  • Meunier PJ, Slosman DO, Delmas PD, et al. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis – a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab, 87(5): 2060–2066, 2002

    Article  PubMed  CAS  Google Scholar 

  • Roux C, Reginster JY, Fechtenbaum J, et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res, 21(4): 536–542, 2006

    Article  PubMed  CAS  Google Scholar 

  • O'Donnell S, Cranney A, Wells GA, et al. Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst Rev, 3: CD005326, 2006

    PubMed  Google Scholar 

  • Stevenson M, Davis S, Lloyd-Jones M, et al. The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women. Health Technol Assess, 11(4): 1–134, 2007

    PubMed  CAS  Google Scholar 

  • Reginster JY, Felsenberg D, Boonen S, et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: Results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum, 58(6): 1687–1695, 2008

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Magnus CJ. Calcitonin alters behaviour of isolated osteoclasts. J Pathol, 136(1): 27–39, 1982

    Article  PubMed  CAS  Google Scholar 

  • Farley J, Dimai HP, Stilt-Coffing B, et al. Calcitonin increases the concentration of insulin-like growth factors in serum-free cultures of human osteoblast-line cells. Calcif Tissue Int, 67(3): 247–254, 2000

    Article  PubMed  CAS  Google Scholar 

  • Overgaard K, Riis BJ, Christiansen C, et al. Effect of salcatonin given intranasally on early postmenopausal bone loss. BMJ, 299(6697): 477–479, 1989

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY, Meurmans L, Deroisy R, et al. A 5-year controlled randomized study of prevention of postmenopausal trabecular bone loss with nasal salmon calcitonin and calcium. Eur J Clin Invest, 24(8): 565–569, 1994

    Article  PubMed  CAS  Google Scholar 

  • Gennari C, Agnusdei D, Montagnani M, et al. An effective regimen of intranasal salmon calcitonin in early postmenopausal bone loss. Calcif Tissue Int, 50(4): 381–383, 1992

    Article  PubMed  CAS  Google Scholar 

  • Carstens JH Jr, Feinblatt JD Future horizons for calcitonin: a U.S. perspective. Calcif Tissue Int, 49(Suppl 2): S2–S6, 1991

    Article  PubMed  Google Scholar 

  • Chesnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med, 109(4): 267–276, 2000

    Article  PubMed  CAS  Google Scholar 

  • Tekeoglu I, Adak B, Budancamanak M, et al. Comparison of cyclic and continuous calcitonin regimens in the treatment of postmenopausal osteoporosis. Rheumatol Int, 26(2): 157–161, 2005

    Article  PubMed  CAS  Google Scholar 

  • Overgaard K, Hansen MA, Jensen SB, et al. Effect of salcatonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose-response study. BMJ, 305(6853): 556–561, 1992

    Article  PubMed  CAS  Google Scholar 

  • Rico H, Revilla M, Hernandez ER, et al. Total and regional bone mineral content and fracture rate in postmenopausal osteoporosis treated with salmon calcitonin: a prospective study. Calcif Tissue Int, 56(3): 181–185, 1995

    Article  PubMed  CAS  Google Scholar 

  • Gennari C, Agnusdei D, Camporeale A. Use of calcitonin in the treatment of bone pain associated with osteoporosis. Calcif Tissue Int, 49(Suppl 2): S9–S13, 1991

    Article  PubMed  Google Scholar 

  • Lyritis GP, Paspati I, Karachalios T, et al. Pain relief from nasal salmon calcitonin in osteoporotic vertebral crush fractures. A double blind, placebo-controlled clinical study. Acta Orthop Scand Suppl, 275: 112–114, 1997

    PubMed  CAS  Google Scholar 

  • Grauer A, Reinel HH, Lunghall S, et al. Formation of neutralizing antibodies after treatment with human calcitonin. Am J Med, 95(4): 439–442, 1993

    Article  PubMed  CAS  Google Scholar 

  • Grauer A, Ziegler R, Raue F. Clinical significance of antibodies against calcitonin. Exp Clin Endocrinol Diabetes, 103(6): 345–351, 1995

    Article  PubMed  CAS  Google Scholar 

  • Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science, 222(4621): 330–332, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kleerekoper M. Fluoride and the skeleton. Crit Rev Clin Lab Sci, 33(2): 139–161, 19896

    Article  Google Scholar 

  • Baylink DJ, Bernstein DS. The effects of fluoride therapy on metabolic bone disease. A histologic study. Clin Orthop Relat Res, 55: 51–85, 1967

    PubMed  CAS  Google Scholar 

  • Kleerekoper M. Osteoporosis and the primary care physician: time to bone up. Ann Intern Med, 123(6): 466–467, 1995

    PubMed  CAS  Google Scholar 

  • Dure-Smith BA, Kraenzlin ME, Farley SM, et al. Fluoride therapy for osteoporosis: a review of dose response, duration of treatment, and skeletal sites of action. Calcif Tissue Int, 49(Suppl): S64–S72, 1991

    Article  PubMed  Google Scholar 

  • Eanes E. The effect of fluoride on bone mineral apatite. Metab Bone Dis Relat Res, 2: 3–10, 1979

    Article  CAS  Google Scholar 

  • Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA, 288(3): 321–333, 2002

    Article  PubMed  CAS  Google Scholar 

  • Modelska K, Cummings S. Tibolone for postmenopausal women: systematic review of randomized trials. J Clin Endocrinol Metab, 87(1): 16–23, 2002

    Article  PubMed  CAS  Google Scholar 

  • Kloosterboer HJ. Tibolone: a steroid with a tissue-specific mode of action. J Steroid Biochem Mol Biol, 76(1–5): 231–238, 2001

    Article  PubMed  CAS  Google Scholar 

  • Berning B, Kuijk CV, Kuiper JW, et al. Effects of two doses of tibolone on trabecular and cortical bone loss in early postmenopausal women: a two-year randomized, placebo-controlled study. Bone, 19(4): 395–399, 1996

    Article  PubMed  CAS  Google Scholar 

  • Bjarnason NH, Bjarnason K, Haarbo J, et al. Tibolone: prevention of bone loss in late postmenopausal women. J Clin Endocrinol Metab, 81(7): 2419–2422, 1996

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JC, Baylink DJ, Freeman R, et al. Prevention of bone loss with tibolone in postmenopausal women: results of two randomized, double-blind, placebo-controlled, dose-finding studies. J Clin Endocrinol Metab, 86(10): 4717–4726, 2001

    Article  PubMed  CAS  Google Scholar 

  • Gambacciani M, Ciaponi M, Cappagli B, et al. A longitudinal evaluation of the effect of two doses of tibolone on bone density and metabolism in early postmenopausal women. Gynecol Endocrinol, 18(1): 9–16, 2004

    Article  PubMed  CAS  Google Scholar 

  • Bjarnason NH, Bjarnason K, Hassager C, et al. The response in spinal bone mass to tibolone treatment is related to bone turnover in elderly women. Bone, 20(2): 151–155, 1997

    Article  PubMed  CAS  Google Scholar 

  • Doren M, Nilsson JA, Johnell O. Effects of specific post-menopausal hormone therapies on bone mineral density in post-menopausal women: a meta-analysis. Hum Reprod, 18(8): 1737–1746, 2003

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR. LIFT study is discontinued. BMJ, 332(7542): 667, 2006

    Article  PubMed  Google Scholar 

  • Need AG, Durbridge TC, Nordin BE. Anabolic steroids in postmenopausal osteoporosis. Wien Med Wochenschr, 143(14–15): 392–395, 1993

    PubMed  CAS  Google Scholar 

  • Geusens P. Nandrolone decanoate: pharmacological properties and therapeutic use in osteoporosis. Clin Rheumatol, 14(Suppl 3): 32–39, 1995

    Article  PubMed  Google Scholar 

  • Geusens P, Dequeker J. Long-term effect of nandrolone decanoate, 1 alpha-hydroxyvitamin D3 or intermittent calcium infusion therapy on bone mineral content, bone remodeling and fracture rate in symptomatic osteoporosis: a double-blind controlled study. Bone Miner, 1(4): 347–357, 1986

    PubMed  CAS  Google Scholar 

  • Lyritis GP, Androulakis C, Magiasis B, et al. Effect of nandrolone decanoate and 1-alpha-hydroxy-calciferol on patients with vertebral osteoporotic collapse. A double-blind clinical trial. Bone Miner, 27(3): 209–217, 1994

    Article  PubMed  CAS  Google Scholar 

  • Passeri M, Pedrazzoni M, Pioli G, et al. Effects of nandrolone decanoate on bone mass in established osteoporosis. Maturitas, 17(3): 211–219, 1993

    Article  PubMed  CAS  Google Scholar 

  • Burr DB, Forwood MR, Fyhrie DP, et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res, 12(1): 6–15, 1997

    Article  PubMed  CAS  Google Scholar 

  • Mashiba T, Hirano T, Turner CH, et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res, 15(4): 613–620, 2000

    Article  PubMed  CAS  Google Scholar 

  • Cosman F, Nieves J, Woelfert L, et al. Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res, 16(5): 925–931, 2001

    Article  PubMed  CAS  Google Scholar 

  • Bone HG, Greenspan SL, McKeever C, et al. Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocrinol Metab, 85(2): 720–726, 2000

    Article  PubMed  CAS  Google Scholar 

  • Greenspan SL, Resnick NM, Parker RA. Combination therapy with hormone replacement and alendronate for prevention of bone loss in elderly women: a randomized controlled trial. JAMA, 289(19): 2525–2533, 2003

    Article  PubMed  CAS  Google Scholar 

  • Evio S, Tiitinen A, Laitinen K, et al. Effects of alendronate and hormone replacement therapy, alone and in combination, on bone mass and markers of bone turnover in elderly women with osteoporosis. J Clin Endocrinol Metab, 89(2): 626–631, 2004

    Article  PubMed  CAS  Google Scholar 

  • Wimalawansa SJ. A four-year randomized controlled trial of hormone replacement and bisphosphonate, alone or in combination, in women with postmenopausal osteoporosis. Am J Med, 104(3): 219–226, 1998

    Article  PubMed  CAS  Google Scholar 

  • Meschia M, Brincat M, Barbacini P, et al. A clinical trial on the effects of a combination of elcatonin (carbocalcitonin) and conjugated estrogens on vertebral bone mass in early postmenopausal women. Calcif Tissue Int, 53(1): 17–20, 1993

    Article  PubMed  CAS  Google Scholar 

  • Watts NB, Notelovitz M, Timmons MC, et al. Comparison of oral estrogens and estrogens plus androgen on bone mineral density, menopausal symptoms, and lipid-lipoprotein profiles in surgical menopause. Obstet Gynecol, 85(4): 529–537, 1995

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Nieves J, Formica C, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet, 350(9077): 550–555, 1997

    Article  PubMed  CAS  Google Scholar 

  • Johnell O, Scheele WH, Lu Y, et al. Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J Clin Endocrinol Metab, 87(3): 985–992, 2002

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med, 349(13): 1207–1215, 2003

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JS, Hayes A, Hunzelman JL, et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med, 349(13): 1216–1226, 2003

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY, Felsenberg D, Pavo I, et al. Effect of raloxifene combined with monofluorophosphate as compared with monofluorophosphate alone in postmenopausal women with low bone mass: a randomized, controlled trial. Osteoporos Int, 14(9): 741–449, 2003

    Article  PubMed  CAS  Google Scholar 

  • Deal C, Omizo M, Schwartz EN, et al. Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J Bone Miner Res, 20(11): 1905–1911, 2005

    Article  PubMed  CAS  Google Scholar 

  • Kaskani E, Lyritis GP, Kosmidis C, et al. Effect of intermittent administration of 200 IU intranasal salmon calcitonin and low doses of 1alpha(OH) vitamin D3 on bone mineral density of the lumbar spine and hip region and biochemical bone markers in women with postmenopausal osteoporosis: a pilot study. Clin Rheumatol, 24(3): 232–238, 2005

    Article  PubMed  Google Scholar 

  • Morabito N, Gaudio A, Lasco A, et al. Three-year effectiveness of intravenous pamidronate versus pamidronate plus slow-release sodium fluoride for postmenopausal osteoporosis. Osteoporos Int, 14(6): 500–506, 2003

    Article  PubMed  CAS  Google Scholar 

  • McClung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med, 354(8): 821-831, 2006

    Article  PubMed  Google Scholar 

  • Arey BJ, Seethala R, Ma Z, et al. A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion in vivo. Endocrinology, 146(4): 2015–2022, 2005

    Article  PubMed  CAS  Google Scholar 

  • Bellido T. Downregulation of SOST/sclerostin by PTH: a novel mechanism of hormonal control of bone formation mediated by osteocytes. J Musculoskelet Neuronal Interact, 6(4): 358–359, 2006

    PubMed  CAS  Google Scholar 

  • Kusu N, Laurikkala J, Imanishi M, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem, 278(26): 24113–24117, 2003

    Article  PubMed  CAS  Google Scholar 

  • Lowik CW, van Bezooijen RL. Wnt signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Musculoskelet Neuronal Interact, 6(4): 357, 2006

    PubMed  CAS  Google Scholar 

  • Robling AG, Bellido T, Turner CH. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact, 6(4): 354, 2006

    PubMed  CAS  Google Scholar 

  • Murphy MG, Cerchio K, Stoch SA, et al. Effect of L-000845704, an alphaVbeta3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab, 90(4): 2022–2028, 2005

    Article  PubMed  CAS  Google Scholar 

  • Tavares FX, Boncek V, Deaton DN, et al. Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin k. J Med Chem, 47(3): 588–599, 2004

    Article  PubMed  CAS  Google Scholar 

  • Miao D, He B, Jiang Y, et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest, 115(9): 2402–2411, 2005

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MJ, Tedesco MB, Gundberg C, et al. Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab, 88(2): 569–575, 2003

    Article  PubMed  CAS  Google Scholar 

  • Svejda P. Statins and osteoporosis. Vnitr Lek, 52(12): 1190–1193, 2006

    PubMed  CAS  Google Scholar 

  • Pasco JA, Kotowicz MA, Henry MJ, et al. Statin use, bone mineral density, and fracture risk: Geelong Osteoporosis Study. Arch Intern Med, 162(5): 537–540, 2002

    Article  PubMed  CAS  Google Scholar 

  • Schlienger RG, Meier CR. HMG-CoA reductase inhibitors in osteoporosis: do they reduce the risk of fracture? Drugs Aging, 20(5): 321–336, 2003

    Article  PubMed  CAS  Google Scholar 

  • Jadhav SB, Jain GK. Statins and osteoporosis: new role for old drugs. J Pharm Pharmacol, 58(1): 3–18, 2006

    Article  PubMed  CAS  Google Scholar 

  • Landin-Wilhelmsen K, Nilsson A, Bosaeus I, et al. Growth hormone increases bone mineral content in postmenopausal osteoporosis: a randomized placebo-controlled trial. J Bone Miner Res, 18(3): 393–405, 2003

    Article  PubMed  CAS  Google Scholar 

  • Agnusdei D, Gentilella R. GH and IGF-I as therapeutic agents for osteoporosis. J Endocrinol Invest, 28(8 Suppl): 32–36, 2005

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Hans Peter Dimai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimai, H., Pietschmann, P., Resch, H. et al. Österreichischer Leitfaden zur medikamentösen Therapie der postmenopausalen Osteoporose – Update 2009. Wien Med Wochenschr 159 (Suppl 122), 1–34 (2009). https://doi.org/10.1007/s10354-009-0656-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-009-0656-x

Keywords

Schlüsselwörter

Navigation