Skip to main content

Advertisement

Log in

Environmental significance of gypsum-bearing layers at the “Lo Hueco” paleontological site (Upper Cretaceous, Cuenca, Spain): petrography, fluid inclusions, and isotopic relations

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

“Lo Hueco” (Cuenca, Spain) is an upper Campanian–lower Maastrichtian Fossil-Lagerstätte that has provided more than 8,500 well-preserved macrofossils, including titanosaur sauropod dinosaurs. Although the facies and fossil record point to both fresh and brackish or marine water influences, a detailed study of the sulphate-bearing layers of the site through petrography, fluid inclusions, and isotopes has been undertaken to evaluate the possible marine influence. The two main sulphate units of the “Lo Hueco” site consist chiefly of bimodal micro- to meso- lenticular gypsum crystals that grew displacively in a clayey-carbonate sediment. The well-preserved lenticular gypsum crystals are primary, as demonstrated by the presence of the original twinning and the absence of hydration textures or anhydrite relicts. Primary fluid inclusions of the lenticular gypsum crystals indicate a vadose environment of formation, with salinities between 1,800 and 14,000 ppm, pointing to a brackish but non-marine environment. Furthermore, gypsum exhibits 87Sr/86Sr values between 0.708034 and 0.708120, which are higher than those from marine evaporites of Campanian–Maastrichtian age, indicating a clear influence of fresh water. Gypsum δ 34S VCDT values (18.1 to 19.0 ± 0.5 ‰) and δ 18OVSMOW values (11.0 to 15.2 ± 0.5 ‰), on the other hand, are typical isotopic values recorded in marine evaporites of this age. This apparent contradiction between fluid inclusion and Sr isotopic data is probably the result of some recycling from Upper Cretaceous evaporites. Based on all these observations, the sulphate-bearing layers are interpreted as probably formed in a near-coastal saline mudflat of a playa lake. As a whole, this study highlights the importance of combining different proxies when dealing with evaporites formed in brackish-water environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albert-Colomer V, Ferreiro-Padín E (1998) Explicación de la Hoja de San Lorenzo de la Parrilla, 634 (23–25). Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de España

  • Ali YA, West I (1983) Relationship of modern gypsum nodules in sabkhas of loess to composition of brines and sediments in northern Egypt. J Sediment Petrol 53(4):1151–1168

    Google Scholar 

  • Arenas C, Casanova J, Pardo G (1997) Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): paleogeographic and paleoclimatic implications. Palaeoclimatol Palaeoecol 128:133–155

    Article  Google Scholar 

  • Barroso-Barcenilla F, Cambra-Moo O, Escaso F, Ortega F, Pascual A, Pérez-García A, Rodríguez-Lázaro J, Sanz JL, Segura M, Torices A (2009a) New and exceptional discovery in the Upper Cretaceous of the Iberian Peninsula: the palaeontological site of “Lo Hueco”, Cuenca, Spain. Cretaceous Res 30:1268–1278

    Article  Google Scholar 

  • Barroso-Barcenilla F, Cambra-Moo O, Carenas B, Coruña F, Domingo L (2009b) First mineralogical and geochemical overview and interpretation of “Lo Hueco” vertebrate site (Upper Cretaceous, Cuenca, Spain). J Vertebr Paleontol 29(Supplement to 3):59

    Google Scholar 

  • Barroso-Barcenilla F, Cambra-Moo O, Segura M (2010) Estudio preliminar sobre Geología y Tafonomía del yacimiento paleontológico de “Lo Hueco” (Cretácico Superior, Cuenca, España). Bol R Soc Esp Hist Nat Sec Geo 104:57–70

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Ac 57:683–684

    Article  Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Article  Google Scholar 

  • Callapez P, Barroso-Barcenilla F, Cambra-Moo O, Segura M (2013) Molluscs from the fossil site of “Lo Hueco” (Upper Cretaceous, Cuenca, Spain): palaeoenvironmental and sequential implications. Estudios Geológicos. doi:10.3989/egeol.41148.244

  • Cambra-Moo O, Barroso-Barcenilla F, Berreteaga A, Carenas B, Coruña F, Domingo L, Domingo MS, Elvira A, Escaso F, Ortega F, Pérez-García A, Peyrot D, Sanz JL, Segura M, Sopelana A, Torices A (2012) Preliminary taphonomic approach to “Lo Hueco” palaeontological site (Upper Cretaceous, Cuenca, Spain). Geobios 46:157–166

    Article  Google Scholar 

  • Cambra-Moo O, Barroso-Barcenilla F, Coruña F, Postigo-Mijarra JM (2013) Exceptionally preserved vegetal remains from the Upper Cretaceous “Lo Hueco” site, Cuenca, Spain. Lethaia 46:127–140

    Article  Google Scholar 

  • Carenas B, Barroso-Barcenilla F, Berreteaga A, Cambra-Moo O, Coruña F, González-Acebrón L, Segura M (2011) First overview on gypsum in the new and exceptional “Lo Hueco” fossil site, (Upper Cretaceous, Cuenca, Spain). In: Sampson DH (ed) Gypsum: properties, production and applications. Nova Publishers, New York, pp 176–190

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan YR, Sakai H, Zak I (1980) The age of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  • Coruña F, Barroso-Barcenilla F, Cambra-Moo O (2011) Clay mineral characterization of “Lo Hueco” fossil site (Upper Cretaceous, Cuenca, Spain). Abstracts of the Euroclay 2011 Conference, p 247

  • D’Alessandro A, Bromley RG (1987) Meniscate trace fossils and the Muensteria-Taerudium problem. Palaeontology 30:743–776

    Google Scholar 

  • Domingo L, Barroso-Barcenilla F, Cambra-Moo O (2013) Palaeoenvironmental reconstruction of the “Lo Hueco” fossil site (Upper Cretaceous, Cuenca, Spain): preliminary stable isotope analyses on crocodilians and dinosaurs. Palaios 28:195–202

    Article  Google Scholar 

  • Forte GL, Ortí F, Rosell L (2005) Isotopic characterization of Jurassic evaporites. Aconcagua-Neuquén Basin, Argentina. Geologica Acta 3:155–161

    Google Scholar 

  • Frey RW, Pemberton SG (1984) Trace fossil facies models. In: Walker RG (ed) Facies models. Geoscience Canada Reprint, Series 1, Geological Association of Canadá, Toronto, pp 189–207

  • García A, Segura M, García-Hidalgo JF, Carenas B (1993) Mixed siliciclastic and carbonate platform of Albian-Cenomanian age from the Iberian Basin (Spain). In: Simo T, Scott BW, Masse JP (eds) Cretaceous carbonate platforms. AAPG Memoir 56, American Association of Petroleum Geologists, Tulsa, pp 255–269

  • García-Hidalgo JF, Barroso-Barcenilla F, Gil J, Martínez R, Pons JM, Segura M (2012) Stratal, sedimentary and faunal relationships in the Coniacian 3rd order sequence of the Iberian Basin (Spain). Cretaceous Res 34:268–283

    Article  Google Scholar 

  • Gil J, Carenas B, Segura M, García-Hidalgo JF, García A (2004) Revisión y correlación de las unidades litoestratigráficas del Cretácico Superior en la región central y oriental de España. Rev Soc Geol Esp 17:249–266

    Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEMP Short Course 31, SEPM, Tulsa

  • González-Acebrón L, Barroso-Barcenilla F, Cambra-Moo O, Carenas B (2010) Exploratory diagenetic analysis on vertebrate fossils from “Lo Hueco” site (Upper Cretaceous, Cuenca Spain). J Vertebr Paleontol Supplement for the Society of Vertebrate Paleontology LXX Meeting:97–98

    Google Scholar 

  • Hancock JM (1991) Ammonite scales for the Cretaceous system. Cretaceous Res 12:259–291

    Article  Google Scholar 

  • Hess J, Bender ML, Schilling JG (1986) Evolution of the ratio of Strontium-87 to Strontium-86 in seawater from Cretaceous to present. Science 231:979–984

    Article  Google Scholar 

  • Holser WT, Clement GP, Jansa LF, Wade JA (1988) Evaporite deposits of the North Atlantic rift. In: Masspeizer W (ed) Triassic-Jurassic rifting. Continental breakup and the origin of the Atlantic Ocean and passive margins, Part B, Elsevier, Amsterdam, pp 526–556

  • Huerta P, Armenteros I, Recio C, Blanco JA (2010) Palaeogroundwater evolution in playa-lake environments. Sedimentary facies and stable isotope record (Palaeogene, Almazán basin, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 286:135–148

    Article  Google Scholar 

  • Ingram BL, Sloan D (1992) Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255:68–72

    Article  Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitization 28. SEPM Spec Publ, Tulsa, pp 87–110

  • Land LS (1992) The dolomite problem: stable and radiogenetic isotope clues. In: Chaudhuri NS (ed) Isotopic signature of sedimentary records 43. Lecture notes in Earth Science, pp 49–68

  • Lendínez-González A, Muñoz del Real JL, Insua-Márquez M (1998) Explicación de la Hoja de Villar de Olalla, 609 (23–24). Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de España, Madrid

  • Lindholm RE, Finkelman RB (1972) Calcite staining; semiquantitative determination of ferrous iron. J Sediment Petrol 1:239–245

    Article  Google Scholar 

  • Lloyd RM (1968) Oxygen isotope behavior in the sulfate-water system. J Geophys Res 73:6099–6110

    Article  Google Scholar 

  • Lu FH, Meyers WL, Schoonen MA (2001) S and O (SO4) isotopes, simultaneous modeling and environmental significance of the Nijar Messinian gypsum, Spain. Geochim Cosmochim Acta 65:3081–3092

    Article  Google Scholar 

  • MacLeod KG, Fullagar PD, Huber BT (2003) 87Sr/86Sr test of the degree of impact-induced slope failure in the Maastrichtian of the western North Atlantic. Geology 31(4):311–314

    Article  Google Scholar 

  • McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6(4):331–358

    Article  Google Scholar 

  • McArthur JM, Howarth RJ (2004) Strontium isotope stratigraphy. In: Gradstein F, Ogg J, Smith A (eds) A geological time scale. Cambridge University Press, Cambridge, pp 96–105

    Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: lowess version 3: best-fit to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Article  Google Scholar 

  • McKenzie J (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. J Geol 89:185–198

    Article  Google Scholar 

  • Meléndez F (1975) Correlación del Cretácico de la Serranía de Cuenca con el del Sondeo de Villanueva de los Escuderos 1 (Cuenca). Actas del I Symposium sobre el Cretácico de la Cordillera Ibérica, pp 85–97

  • Meléndez-Hevia F (1971) Estudio geológico de la Serranía de Cuenca en relación a sus posibilidades petrolíferas. Ph.D. Thesis. Publicaciones de la Facultad de Ciencias de la Universidad Complutense de Madrid, Madrid

  • Ortega F, Sanz JL, Barroso-Barcenilla F, Cambra-Moo O, Escaso F, García-Oliva M, Marcos-Fernández F (2008) El yacimiento de macrovertebrados fósiles del Cretácico Superior de “Lo Hueco” (Fuentes, Cuenca). In: Esteve J, Meléndez G (eds) Palaeontologica Nova. Publicaciones del Seminario de Paleontología de Zaragoza 8, Zaragoza, pp 119–131

    Google Scholar 

  • Ortí F (2000) Unidades glauberíticas del Terciario Ibérico: nuevas aportaciones. R Soc Geol Esp 13:227–249

    Google Scholar 

  • Ortí F (2010) Evaporitas: introducción a la sedimentología evaporítica. In: Arche A (ed) Sedimentología: del proceso físico a la cuenca sedimentaria. Consejo Superior de Investigaciones Científicas, Madrid, pp 675–769

    Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–1665

    Article  Google Scholar 

  • Pérez-García A, Ortega F, Murelaga X (2009) Una probable tortuga Pancryptodira del Cretácico Superior de “Lo Hueco” (Cuenca, España). Paleolusitana 1:365–371

    Google Scholar 

  • Peyrot D, Barroso-Barcenilla F, Cambra-Moo O (2013) Paleoecology of the late Campanian/early Maastrichtian Fossil-Lagerstätte of “Lo Hueco” (Cuenca, Spain): palynological insigns. Palaeogeogr Palaeoclimatol Palaeoecol 387:27–39

    Article  Google Scholar 

  • Playà E, Rosell L (2005) The celestite problem in gypsum Sr geochemistry: an evaluation of purifying methods of gypsiferous samples. Chem Geol 221:102–116

    Article  Google Scholar 

  • Playà E, Cendón DI, Travé A, Chivas AR, García A (2007) Non-marine evaporites with both inherited marine and continental signatures: the Gulf of Carpetania, Australia, at ~70 ka. Sediment Geol 201:267–285

    Article  Google Scholar 

  • Poyato-Ariza FJ, Talbot MR, Fregenal-Martínez MA, Melendez N, Wenz S (1998) First isotopic and multidisciplinary evidence for non-marine coelacanths and pycnodontiform fishes: paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 144:65–84

    Article  Google Scholar 

  • Ramírez del Pozo J, Portero JM, Olivé A (1975) Fuentes, 635 (24–25). Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de España

  • Ramírez-Merino JA (1989) Explicación de la Hoja de Las Majadas, 587 (24–23) Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de España, Madrid

  • Rodríguez-Aranda JP, Calvo JP (1998) Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite successions. Palaeogeogr Palaeoclimatol Palaeoecol 140:383–399

    Article  Google Scholar 

  • Salvany JM, Muñoz A, Pérez A (1994) Nonmarine evaporitic sedimentation and associated diagenetic processes of the southwestern margin of the Ebro Basin (lower Miocene), Spain. J Sediment Res 64(A2):190–203

    Google Scholar 

  • Segura M, García-Hidalgo JF, Carenas B, García A (1993) Upper Cenomanian platform from central Eastern Iberian (Spain). In: Simo T, Scott BW, Masse JP (eds) Cretaceous carbonate platforms. AAPG Memoir 56, American Association of Petroleum Geologists, pp 283–296

  • Segura M, Polo T, García-Hidalgo JF, Gil J, Carenas B, García A (2006) The Upper Cretaceous in Tagus Basin (Central Spain): sequential analysis based on oil-well data and outcrop correlation. In: Moratti G, Chalouan A (eds) Tectonics of the Western Mediterranean and North Africa. Geological Society, Special Publication, 262, pp 231–244

  • Strauss H (1997) The isotopic composition of sedimentary sulphur through time. Palaeogeogr Palaeoclim Paleoecol 132:97–118

    Article  Google Scholar 

  • Thode HG, Monster J (1965) Sulfur isotope geochemistry of petroleum, evaporites, and ancient seas. Am Assoc Pet Geol Mem 4:367–377 (reprinted In: Kirkland DW, Evans R (eds) Marine evaporites: origin, diagenesis, and geochemistry. Dowden, Hutchinson and Ross, Stroudsburg, 1973, pp 363–373)

  • Tucker ME, Wright VP (1992) Carbonate sedimentology. Blackwell, Oxford

    Google Scholar 

  • Utrilla R, Pierre C, Ortí F, Pueyo JJ (1992) Oxygen and sulphur isotope compositions as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain. Chem Geol 102:229–244

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Goddéris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Vilas L, Mas R, García A, Alonso A, Meléndez N, Rincón R (1982) Ibérica Suroccidental. In: García A (ed) El Cretácico de España. Universidad Complutense de Madrid, Madrid, pp 457–508

    Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin Heidelberg New York, p 1035

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the useful comments and revisions on the manuscript of F. Ortí, M. Moragas, E. Playà, L. Domingo, and M.E. Tucker. Barajas is also thanked for her technical support. Part of this research has been financed and carried out within projects PEII11-0237-7926 of the Junta de Castilla-La Mancha, and CGL2011-25894, CGL2011-227/BTE and CGL2012-35199 of the Ministerio de Economía y Competitividad, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura González-Acebrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Acebrón, L., Barroso-Barcenilla, F., Cambra-Moo, O. et al. Environmental significance of gypsum-bearing layers at the “Lo Hueco” paleontological site (Upper Cretaceous, Cuenca, Spain): petrography, fluid inclusions, and isotopic relations. Facies 60, 755–771 (2014). https://doi.org/10.1007/s10347-014-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-014-0402-8

Keywords

Navigation