Skip to main content
Log in

Preservation of phosphatic wood remains in marine deposits of the Brentskardhaugen Bed (Middle Jurassic) from Svalbard (Boreal Realm)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The exceptional record of well-preserved wood remains from the Middle Jurassic of Svalbard is studied from the taphonomic point of view. These remains were recovered from the Brentskardhaugen Bed, a conglomerate with phosphatic nodules, which constitutes the record of the eroded deposits corresponding to the Toarcian–Early Bathonian gap. The wood remains occur in the cores of these nodules. These wood fragments are preserved as phosphate (francolite) and as charcoals. The well preservation allows us to identify xenoxyloid cross-field pits and xenoxylean pitting on the radial wall of tracheid, characterizing the species Xenoxylon phyllocladoides. Phosphatic nodules originated as the result of early phosphate precipitation filling the inter-particle pore space of the sandy quartz sediment around the wood fragments (and other organic-rich nucleation centers) below the sediment–water interface. This phosphatization involved a sudden burial of the wood remains in the sea-bottom, the subsequent decay of the lignin, and a fast growth of carbonate fluorapatite forming phosphatic inner moulds. Fossil microbial biofilms induced the phosphatization. The dissolution/decay of the lignin is not possible in charcoal, and phosphatic casts did not develop in charcoalified parts. Some remains were not totally charred, with the lignin preserved only in reduced relicts that were later replaced by phosphate. The phosphate precipitation occurred in recurrent episodes during the Toarcian–Callovian as a result of distinct sea-level rises and the associated nutrification of the shelf. The phosphatic nodules were developed and reworked during the transgressive–regressive cycle of the Toarcian–Early Bathonian, as well as during the final transgression of the Late Bathonian–Earliest Callovian, which resulted in the Brentskardhaugen Bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abed AM, Fakhouri K (1990) Role of microbial processes in the genesis of Jordanian Upper Cretaceous phosphorite In: Notholt AJG, Jarvis I (eds) Phosphorite research and development, vol 52. Geol Soc Lond Spec Publ, pp 193–203

  • Allison PA (1988a) Konservat Lagerstätten: cause and classification. Paleobiology 14:331–344

    Google Scholar 

  • Allison PA (1988b) Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia 21:403–410

    Article  Google Scholar 

  • Allouc J, Harmelin JG (2001) Les dépôts d’enduits manganoferrifères en environnement marin littoral. L’exemple de grottes sous-marines en Méditerranée nord-occidentale. Bull Soc géol France 172:765–778

    Article  Google Scholar 

  • Arena DA (2008) Exceptional preservation of plants and invertebrates by phosphatization, Riversleigh, Australia. Palaios 23:495–502

    Article  Google Scholar 

  • Bäckström SA, Nagy J (1985) Depositional history and fauna of a Jurassic phosphorite conglomerate (the Brentskardhaugen Bed) in Spitsbergen. Norsk Polarinstitutt Skrifter 183:1–61

    Google Scholar 

  • Baturin GN (1982) Phosphorites on the sea floor. Development in sedimentology. Elsevier, Amsterdam, 33:343 p

  • Birkenmayer K (1975) Jurassic and Cretaceous sedimentary formations of SW Torell Landm Spitsbergen. Stud Geol Polonica 44:7–74

    Google Scholar 

  • Birkenmayer K, Pugaczewska H (1975) Jurassic and Lower Cretaceous marine fauna of SW Torell Land, Spitsbergen. Stud Geol Polonica 44:75–104

    Google Scholar 

  • Briggs DEG (2001) Exceptionally preserved fossils. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 328–332

    Chapter  Google Scholar 

  • Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Ann Rev Earth Planet Sci 31:275–301

    Article  Google Scholar 

  • Briggs DEG, Wilby PR (1996) The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. J Geol Soc Lond 153:665–668

    Article  Google Scholar 

  • Briggs DEG, Kear AJ, Martill DM, Wilby PR (1993) Phosphatization of soft tissue in experiments and fossils. J Geol Soc Lond 150:1035–1038

    Article  Google Scholar 

  • Brison A-L, Philippe M, Thevenard F (2001) Are Mesozoic growth-ring patterns climate-induced? Palaeobiology 27:531–538

    Article  Google Scholar 

  • Burckhardt C (1911) Bemerkungen zu einigen Arbeiten von W. Gothan und A.G. Nathorst. Centralblatt Mineralogie Geologie u. Paläontologie 14:442–449

    Google Scholar 

  • Buurman P (1972) Mineralization of fossil wood. Scripta Geol 12:1–43

    Google Scholar 

  • Carson GA (1991) Silicification of fossils. In: Allison PA, Briggs DEG (eds) Taphonomy. Plenum Press, New York, pp 455–499

    Google Scholar 

  • Chafetz HS, Akdim B, Julia R, Reid A (1998) Mn- and Fe-rich black travertine shrubs: bacterially (and nanobacterially) induced precipitates. J Sed Res 68:404–412

    Google Scholar 

  • Clausen CA (1996) Bacterial associations with decaying wood: a review. Int Biodet Biodegr 37:101–107

    Article  Google Scholar 

  • Cramer in Heer C (1868) Fossile Hölzer der arctischen Zone. In: Heer O (ed) Flora fossilis arctica - Die fossile Flora der Polarländer. Zürich, pp 167–180

    Google Scholar 

  • Duncan IJ, Briggs DEG (1996) Three-dimensionally preserved insects. Nature 381:30–31

    Article  Google Scholar 

  • Dypvik H, Hvoslef S, Bjærke T, Finnerud E (1985) The Wihelmøya Formation (Upper Triassic–Lower Jurassic) at Bohemanflya, Spitsbergen. Polar Res 3:155–165

    Article  Google Scholar 

  • Fernández-López SR (1991) Taphonomic concepts for a theoretical biochronology. Rev Española Paleont 6:37–49

    Google Scholar 

  • Fernández-López SR, Fernández-Jalvo Y, Alcalá L (2002) Accumulation: taphonomic concept and other palaeontological uses. In: De Renzi M, Pardo-Alonso MV, Belinchón M, Peñalver E, Montoya P, Márquez-Aliaga A (eds) Current topics on taphonomy and fossilization. Ayuntamiento de Valencia. pp 37–47

  • Flood B, Nagy J, Winsnes TS (1971) Geological map of Spitsbergen, southern part. Norsk Polarinstitutt Skrifter, 154 p

  • Föllmi KB (1989) Evolution of the Mid-Cretaceous triad: platform carbonates, phosphatic sediments, and pelagic sediments along the Northern Tethys Margin. Lecture notes in earth sciences 23, Springer, Berlin Heidelberg New York, 153 p

  • Föllmi KB (1990) Condensation and phosphogenesis: examples of the Helvetic Mid-Cretaceous (Northern Tethyan Margin). In: Notholt AJG, Jarvis I (eds) Phosphorite research and development. Geol Soc Lond Spec Publ 52:237–252

  • Föllmi KB (1996) The phosphorous cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci Rev 40:55–124

    Article  Google Scholar 

  • Föllmi KB, Weissert H, Bisping M, Funk H (1994) Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous Northern Tethyan Margin. GSA Bull 106:729–746

    Article  Google Scholar 

  • Föllmi KB, Gertsch B, Renevey JP, De Kaenel E, Stilles P (2008) Stratigraphy and sedimentology of phosphate-rich sediments in Malta and south-eastern Sicily (latest Oligocene to early Late Miocene). Sedimentology 55:1029–1051

    Article  Google Scholar 

  • Fürsich FT (1978) The influence of faunal condensation and mixing of the preservation of fossil benthic communities. Lethaia 11:243–250

    Article  Google Scholar 

  • Gluskoter HJ, Pierard LH, Pfefferkorn HW (1970) Apatite petrifactions in Pennsylvanian shales of Illinois. J Sed Res 40:1363–1366

    Google Scholar 

  • Goldberg ED, Parker RH (1960) Phosphatized wood from the Pacific sea floor. Bull Geol Soc Am 71:631–632

    Article  Google Scholar 

  • Gómez JJ, Fernández-López SR (1994) Condensation processes in shallow platforms. Sed Geol 92:147–159

    Article  Google Scholar 

  • Gothan W (1905) Zur Anatomie lebender und fossiler Gymnospermen-Hölzer. Abhandlungen Preussische Geologische Landesanst 44:1–108

    Google Scholar 

  • Gothan W (1910) Die fossilen Holzreste von Spitzbergen. Kungliga svenska Vetenskapsakademien Handlingar 45:1–56

    Google Scholar 

  • Gothan W (1911) Das geologische Alter der Holzreste von König-Karls-Land (und der oberjurassischen Flora der Arktis überhaupt). Zeitschrifft Deutsche Geologische Gesellschaft, Monatsbericht 63:163–166

    Google Scholar 

  • Grimes ST, Brock F, Rickard D, Davies KL, Edwards D, Briggs DEG, Parkes RJ (2001) Understanding fossilization: experimental pyritization of plants. Geology 29:123–126

    Article  Google Scholar 

  • Gupta NS, Pancost RD (2004) Biomolecular and physical taphonomy of angiosperm leaf during early decay: implications for fossilization. Palaios 19:428–440

    Article  Google Scholar 

  • Jarvis I, Burnett WC, Nathan Y, Almbaydin F, Attia KM, Castro LN, Flicoteaux R, Hilmy ME, Husain V, Qutawna AA, Serjani A, Zanin YN (1994) Phosphorite geochemistry: state-of-the-art and environmental concerns. Eclog Geol Helv 87:643–700

    Google Scholar 

  • Jefferson TH (1987) The preservation of conifer wood: examples from the Lower Cretaceous of Antarctica. Palaeontology 30:233–249

    Google Scholar 

  • Jeong GY (1998) Formation of vermicular kaolinite from halloysite aggregates in the weathering of plagioclase. Clays Clay Miner 46:270–279

    Article  Google Scholar 

  • Jiang HE, Ferguson DK, Li CS, Cheng YM (2008) Fossil coniferous wood from the Middle Jurassic of Lioning Province, China. Rev Palaeobot Palynol 150:37–47

    Article  Google Scholar 

  • Johnsen SO, Mørk A, Dypvik H, Nagy J (2001) Outline of the geology in Svalbard. 7th ESF IMPACT Workshop, 11 p

  • Jones TP, Ash S, Figueiral I (2002) Late Triassic charcoal from Petrified Forest National Park, Arizona, USA. Palaeogeogr Palaeoclimatol Palaeoecol 188:127–139

    Article  Google Scholar 

  • Kautz CQ, Ryan PC (2003) The 10Å to 7Å halloysite transition in a tropical soil sequence, Costa Rica. Clays Clay Miner 51:252–263

    Article  Google Scholar 

  • Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. Int Assoc Wood Anatomists J 21:135–155

    Google Scholar 

  • Knarud R (1980) En sedimentologist og diagenetic undersøkelse av Kapp Toscana formasjonens sedimenter på Svalbard. Unpublished MS Thesis, University of Oslo, Oslo, 208 p

  • Koeniguer JC (1973) Sur une liane plio-quaternaire du Tchad. Bulletin du Muséum National d’Histoire Naturelle, Sciences de la Terre 172:81–91

    Google Scholar 

  • Kopik J, Wierzbowski A (1988) Ammonites and stratigraphy of the Bathonian and Callovian at Janusfjellet and Wimanfjellet, Sassenfjorden, Spitsbergen. Acta Palaeont Polon 33:145–168

    Google Scholar 

  • Krajewski KP (1989) Organic geochemistry of a phosphorite to black shale transgressive succession: Wilhelmøya and Janusfjellet Formations (Rhaetian-Jurassic) in Central Spitsbergen, Arctic Ocean. Chemic Geol 74:249–263

    Article  Google Scholar 

  • Krajewski K (1990) Phosphoritization in a starved shallow shelf environment: the Brentskardhaugen Bed (Toarcian-Bajocian) in Spitsbergen. Polish Polar Res 11:331–334

    Google Scholar 

  • Krajewski K (1992) Phosphorite-bearing sequence of the Wilhelmøya Formation at Hornsund and along western coast of Sørkapp Land, Spitsbergen. Stud Geol Polonica 98:171–199

    Google Scholar 

  • Krajewski KP (2000) Early diagenetic collapse and injection microstructures in phosphate nodules of the Brentskardhaugen Bed (Jurassic) in Spitsbergen. Bull Polish Acad Sci 48:209–229

    Google Scholar 

  • Krajewski KP (2001) Diagenetic recrystallization of apatite in phosphate nodules of the Brentskardhaugen Bed (Jurassic) in Spitsbergen. Bull Polish Acad Sci 49:71–87

    Google Scholar 

  • Krajewski KP, Van Cappellen P, Trichet J, Kuhn O, Lucas J, Martín-Algarra A, Prèvôt L, Tewari VC, Gaspar L, Knight RI, Lamboy M (1994) Biological processes and apatite formation in sedimentary environments. Eclog Geol Helv 87:701–745

    Google Scholar 

  • Krajewski KP, Łącka B, Kuźniarski M, Orłowski R, Prejbisz A (2001) Diagenetic origin of carbonate in the Marhøgda Bed (Jurassic) in Spitsbergen, Svalbard. Polish Polar Res 22:89–128

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Lamboy M (1990) Microbial mediation in phosphatogenesis: new data from the Cretaceous phosphatic chalks of northern France. In: Notholt JG, Jarvis I (eds) Phosphorite research and development. Geol Soc Lond Spec Publ 52:1157–1167

  • Lamboy M (1993) Phosphatization of calcium carbonate in phosphorites: microstructure and importance. Sedimentology 40:53–62

    Article  Google Scholar 

  • Lamboy M, Monty C (1987) Bacterial origin of phosphatized grains. Terra Cognita 7:207

    Google Scholar 

  • Lichtenegger HC, Müller M, Wimmer R, Fratzl P (2003) Microfibril angles inside and outside crossfields of Norway spruce tracheids. Holzforschung 57:13–20

    Article  Google Scholar 

  • Lucas J, Prèvôt L (1991) Phosphates and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy. Plenum Press, New York, pp 389–409

    Google Scholar 

  • Maher HD (1989) A storm-related origin for the Jurassic Brentskardhaugen Bed of Spitsbergen, Norway. Polar Res 7:67–77

    Article  Google Scholar 

  • Marcelino V, Stoops G (1996) A weathering score for sandy soil materials based on the intensity of etching of quartz grains. European J Soil Sci 47:7–12

    Article  Google Scholar 

  • Marcelino V, Mussche G, Stoops G (1999) Surface morphology of quartz grains from tropical soils and its significance for assessing soil weathering. European J Soil Sci 50:1–8

    Article  Google Scholar 

  • Marshall-Neill G, Ruffell A (2004) Authigenic phosphate nodules (Late Cretaceous, Northern Ireland) as condensed succession microarchives. Cret Res 25:439–452

    Article  Google Scholar 

  • Martill DM (1988) Preservation of fish in the Cretaceous Santana formation of Brazil. Palaeontology 31:1–18

    Google Scholar 

  • Martill DM (1989) The Medusa effect: instantaneous fossilization. Geol Today 5:201–205

    Article  Google Scholar 

  • Mørk A, Knarud R, Worsley D (1982) Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. Can Soc Petrol Geol Mem 8:371–398

    Google Scholar 

  • Mørk A, Dallmann WK, Dypvik H, Johanessen EP, Larssen GB, Nagy J, Nøttvedt A, Olaussen S, Pčelina TM, Worsley D (1999) Mesozoic lithostratigraphy. In: Dallmann WK (ed) Lithostratigraphic lexicon of Svalbard. Review and recommendations for nomenclature use. Upper Palaeozoic to Quaternary bedrock. Norsk Polarinst, Tromsø, pp 127–214

    Google Scholar 

  • Müller KJ (1985) Exceptional preservation in calcareous nodules. Philos Trans R Soc London B 311:67–74

    Article  Google Scholar 

  • Ogihara S (1999) Geochemical characteristics of phosphorite and carbonate nodules from the Miocene Funakawa Formation, western margin of the Yokote Basin, northeast Japan. Sed Geol 125:69–82

    Article  Google Scholar 

  • Pailler D, Flicoteaux R, Ambrosi JP, Médus J (2000) Les bois fossiles mio-pliocènes de Nkondo (Lac Albert, Ouganda), composition minéralogique et mode de formation. C R Acad Sci Paris, Sci Terre et Planets 331:279–286

    Google Scholar 

  • Papoulis D, Tsolis-Katagas P, Katagas C (2004) Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays Clay Miner 52:275–286

    Article  Google Scholar 

  • Pedley HM, Bennett SM (1985) Phosphorites, hardgrounds and syndepositional solution subsidence: a palaeoenvironmental model from the Miocene of the Maltese Islands. Sed Geol 45:1–34

    Article  Google Scholar 

  • Philippe M (1991) Bois fossiles du Jurassique de Franche-Comté. Unpublished M.S. thesis, Lyon-1 University, Lyon, 235 p

  • Philippe M (1995) Bois fossiles du Jurassique de Franche-Comté (nord-est de la France): systématique et biogéographie. Palaeont Abt B 236:45–103

    Google Scholar 

  • Philippe M, Cantrill DJ (2007) Nomenclatural types and taxonomy of Gothan’s Arctic fossil conifer wood. Taxon 56:551–566

    Google Scholar 

  • Philippe M, Thévenard F (1996) Repartition and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe. Rev Palaeobot Palynol 91:353–370

    Article  Google Scholar 

  • Philippe M, Jiang H-E, Kim K-S, Oh C, Gromyko D, Harland M, Paik I-S, Thevenard F (2009) Structure and diversity of the Mesozoic wood genus Xenoxylon in Far-East Asia: implications for terrestrial palaeoclimates. Lethaia 42:393–406

    Article  Google Scholar 

  • Pye K, Mazzullo J (1994) Effects of tropical weathering on quartz grain shape: an example from northeastern Australia. J Sed Res 64:500–507

    Google Scholar 

  • Reimers CE, Kastner M, Garrison RE (1990) The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. In: Riggs SR, Burnett WC (eds) Phosphate deposits of the world: genesis of neogene to modern phosphorites, vol 3. Cambridge University Press, Cambridge, pp 301–311

    Google Scholar 

  • Reolid M (2008) Taphonomic features of Lenticulina as a tool for paleoenvironmental interpretation of midshelf deposits of the Upper Jurassic (Prebetic Zone, southern Spain). Palaios 23:482–494

    Article  Google Scholar 

  • Reolid M, Philippe M, Abad I, Nagy J (2009) Exceptional preservation of phosphatic wood remains of the Middle Jurassic from Spitsbergen (Arctic Realm). Comunicaciones XXV Jornadas de la Sociedad Española de Paleontología, pp 318–320

  • Rivadeneyra MA, Martín-Algarra A, Sánchez-Navas A, Martín-Ramos D (2006) Carbonate and phosphate precipitation by Chromohalobacter marismortui. Geomicrobiol J 23:89–101

    Article  Google Scholar 

  • Schwarze FW, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer, Berlin Heidelberg New York 185 p

    Google Scholar 

  • Scott AC (1990) Anatomical preservation of fossil plants. In: Briggs DEG, Crowther PR (eds) Palaeobiology a synthesis. Blackwell Scientific Publ, Oxford, pp 263–266

    Google Scholar 

  • Scott AC, Collinson ME (2003) Non-destructive multiple approaches to interpret the preservation of plant fossils: implications for calcium-rich permineralizations. J Geol Soc Lond 160:857–862

    Article  Google Scholar 

  • Scott AC, Cripps JA, Collinson ME, Nichols GJ (2000) The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeogr Palaeoclimatol Palaeoecol 164:1–31

    Article  Google Scholar 

  • Seilacher A, Reif WE, Westphal F (1985) Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos Trans R Soc Lond B 311:5–23

    Article  Google Scholar 

  • Sheldom RP (1980) Episodicity of phosphate deposition and deep ocean circulation—a hypothesis. In: Bentor YK (ed) Marine phosphorites—Geochemistry, occurrence, genesis, vol 29. SEPM Spec Publ, pp 239–247

  • Soudry D (2000) Microbial phosphate sediment. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 127–136

    Google Scholar 

  • Soudry D, Lewy Z (1988) Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, Southern Israel). Palaeogeogr Palaeoclimatol Palaeoecol 64:15–34

    Article  Google Scholar 

  • Souza VS, Vidal-Torrado P, García-González MT, Otero XL, Macías F (2008) Soil mineralogy of mangrove forest from the state of Sao Paulo, Southeastern Brazil. Soil Sci Soc Am J 72:848–857

    Article  Google Scholar 

  • Sweeney IJ, Chin K, Hower JC, Budd DA, Wolfe DG (2009) Fossil wood from the middle Cretaceous Moreno Hill Formation: unique expressions of wood mineralization and implications for the processes of wood preservation. Int J Coal Geol 79:1–17

    Article  Google Scholar 

  • Tchoumatchenco P, Philippe M, Yaneva M (2008) Did glaciation occur during the Toarcian (Early Jurassic) in the East Stara Planina Mts. (East Bulgaria)? Proc Bulgarian Acad Sci 61:1301–1308

    Google Scholar 

  • Toporski JKW, Steele A, Westall F, Avci R, Martill DM, McKay DS (2002) Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim Cosmochim Acta 66:1773–1791

    Article  Google Scholar 

  • Trela W (2008) Sedimentary and microbial record of the Middle/Late Ordovician phosphogenetic episode in the northern Holy Cross Mountains, Poland. Sed Geol 203:131–142

    Article  Google Scholar 

  • Wierzbowski A, Kulicki C, Pugaczewska H (1981) Fauna and stratigraphy of the Uppermost Triassic and the Toarcian and Aalenian in the Sassenfjorden, Spitsbergen. Acta Paleont Pol 26:195–237

    Google Scholar 

  • Wilby PR, Martill DM (1992) Fossil fish stomachs: a microenvironment for exceptional preservation. Hist Biol 6:25–36

    Article  Google Scholar 

  • Wilby PR, Briggs DEG, Bernier P, Gaillard C (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790

    Article  Google Scholar 

  • Wilby PR, Hudson JD, Clements RG, Hollingworth NTJ (2004) Taphonomy and origin of an accumulate of soft-bodied cephalopods in the Oxford Clay Formation (Jurassic, England). Palaeontology 47:1159–1180

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out with the financial support of Projects UJA_07_16_23 (Universidad de Jaén) and P08-RNM-3715 (Junta de Andalucía) and RYC-2009-04316 (Ramón y Cajal Program). M. Reolid obtained funding from the Universidad de Jaén and Junta de Andalucía for a short stay in the Universitetet i Oslo in February 2008. We are also grateful to A. Piedra, technician at the Laboratorio de Geología of the Universidad de Jaén, for preparation of the thin sections. We are indebted to Krzysztof P. Krajewski (Polish Academy of Sciences) for critical reading of the manuscript and their comments, improving the text. We are also thankful to the Managing Editor Andre Freiwald for reviewing the manuscript in the last phase. We are grateful to a native English speaker (Jean Louise Sanders) for reviewing the grammar. This is a contribution of the IGCP-506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Reolid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reolid, M., Philippe, M., Nagy, J. et al. Preservation of phosphatic wood remains in marine deposits of the Brentskardhaugen Bed (Middle Jurassic) from Svalbard (Boreal Realm). Facies 56, 549–566 (2010). https://doi.org/10.1007/s10347-010-0219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-010-0219-z

Keywords

Navigation