Skip to main content

Advertisement

Log in

Mineralogy of Arctic bryozoan skeletons in a global context

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Bryozoans are major carbonate producers in some ancient and Recent benthic environments, including parts of the Arctic Ocean. Seventy-six species of bryozoans from within the Arctic Circle have been studied using XRD to determine their carbonate mineralogies and the Mg content of the calcite. The majority of species were found to be calcitic, only four having bimineralic skeletons that combined calcite and aragonite, and none being entirely aragonitic. In almost all species, the calcite was of the low- (<4 mol% MgCO3) or intermediate-Mg (4–11.99 mol% MgCO3) varieties. Previous regional studies of bryozoan biomineralogy have found higher proportions of bimineralic and/or aragonitic species in New Zealand and the Mediterranean, with a greater number of calcitic species employing intermediate- and high-Mg calcite. The Antarctic bryozoan fauna, however, has a similar mineralogical composition to the Arctic. The lesser solubility of low-Mg calcite compared to both Mg calcite and aragonite in cold polar waters is most likely responsible for this latitudinal pattern. However, it is unknown to what extent environmental factors drive the pattern directly through eliciting an ecophenotypic response from the bryozoans concerned or the pattern reflects genetic adaptations by particular bryozoan clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson LG, Bjork G, Holby O, Jones EP, Kattner G, Koltermann KP, Lijeblad B, Lindegren R, Rudels B, Swift J (1994) Water masses and circulation in the Eurasian Basin: results from the Oden 91 expedition. J Geophys Res 99:3273–3283. doi:10.1029/93JC02977

    Article  Google Scholar 

  • Andruleit H, Freiwald A, Schäfer P (1996) Bioclastic carbonate sediments on the southwestern Svalbard shelf. Mar Geol 134:163–182. doi:10.1016/0025-3227(96)00044-8

    Article  Google Scholar 

  • Bader B, Schäfer P (2005) Bryozoans in polar latitudes: Arctic and Antarctic bryozoan communities and facies. Denisia 16:263–282

    Google Scholar 

  • Bayer FM, Macintyre IG (2001) The mineral component of the axia and holdfasts of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae. Proc Biol Soc Wash 114:309–345

    Google Scholar 

  • Bone Y, James NP (1993) Bryozoans as carbonate sediment producers on the cool Lacepede Shelf, southern Australia. Sediment Geol 86:247–271. doi:10.1016/0037-0738(93)90025-Z

    Article  Google Scholar 

  • Borisenko YA, Gontar VI (1991) Skeletal composition of cold-water bryozoans (in Russian). Biol Morya 1:80–90

    Google Scholar 

  • Cairns SD, Macintyre IG (1992) Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios 7:96–107. doi:10.2307/3514799

    Article  Google Scholar 

  • Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 69–114

    Google Scholar 

  • Carter JG, Barrera E, Tevesz MJS (1998) Thermal potential and mineralogical evolution in the Bivalvia (Mollusca). J Paleontol 72:991–1010

    Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. J Geol 62:266–283

    Article  Google Scholar 

  • Checa AG, Jimenez-Lopez C, Rodriguez-Navarro A, Machado JP (2007) Precipitation of aragonite by calcite bivalves in Mg-enriched marine waters. Mar Biol (Berl) 150:819–827. doi:10.1007/s00227-006-0411-4

    Article  Google Scholar 

  • Clarke A (1998) Temperature and energetics: an introduction to cold ocean physiology. In: Pörtner H-O, Playle RC (eds) Cold ocean physiology. Society for Experimental Biology Seminar Series. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • Cohen AL, Branch GM (1992) Environmentally controlled variation in the structure and mineralogy of Patella granularis shells from the coast of southern Africa: implications for palaeotemperature assessments. Palaeogeogr Palaeoclimatol Palaeoecol 91:49–57. doi:10.1016/0031-0182(92)90031-Y

    Article  Google Scholar 

  • Davis KJ, Dove PM, De Yoreo JJ (2000) The role of Mg2+ as an impurity in calcite growth. Science 290:1134–1137. doi:10.1126/science.290.5494.1134

    Article  Google Scholar 

  • Dodd JR (1967) Magnesium and strontium in calcareous skeletons: a review. J Paleontol 41:1313–1329

    Google Scholar 

  • Ettensohn FR et al (1986) Paleoecology and paleoenvironments of the bryozoan-rich Sulphur Well Member, Lexington Limestone (Middle Ordovician), central Kentucky. Southeast Geol 26:199–219

    Google Scholar 

  • Fabry VJ (2008) Marine calcifiers in a high-CO2 ocean. Science 320:1020–1022. doi:10.1126/science.1157130

    Article  Google Scholar 

  • Gray JS (2002) Species richness of marine soft sediments. Mar Ecol Prog Ser 244:285–297. doi:10.3354/meps244285

    Article  Google Scholar 

  • Harper EM (2000) Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? J Zool (Lond) 251:179–186. doi:10.1111/j.1469-7998.2000.tb00602.x

    Article  Google Scholar 

  • Henrich R, Hartmann M, Reitner J, Schäfer P, Freiwald A, Steinmetz S, Dietrich P, Thiede J (1992) Facies belts and communities of the Arctic Vesterisbanken Seamount (Central Greenland Sea). Facies 27:71–104. doi:10.1007/BF02536805

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007. The intergovermental panel on climate change 4th assessment report. Last accessed February 9, 2009, www.ipcc.ch

  • James NP, Choquette PW (1983) Diagenesis 9. Limestones, the meteoric diagenetic environment. Geosci Can 11:161–194

    Google Scholar 

  • James NP, Clarke JDA (eds) (1997) Cool-water carbonates. SEPM Special Publication, vol 56, pp 1–440

  • James NP, Bone Y, Kyser TK (2005) Where has all the aragonite gone? Mineralogy of Holocene neritic cool-water carbonates, southern Australia. J Sediment Res 75:454–463. doi:10.2110/jsr.2005.035

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120. doi:10.1126/science.284.5411.118

    Article  Google Scholar 

  • Kluge GA (1975) Bryozoa of the northern seas of the USSR. Amerind Publishing Co, New Delhi

    Google Scholar 

  • Kuklinski P, Porter J (2004) Alcyonidium disciforme Smitt, 1871: an exceptional Arctic bryozoan. J Mar Biol Assoc U K 84:267–275. doi:10.1017/S0025315404009130h

    Article  Google Scholar 

  • Kuklinski P, Taylor PD (2006) Unique life history strategy in a successful Arctic bryozoan, Harmeria scutulata. J Mar Biol Assoc U K 86:1035–1046. doi:10.1017/S0025315406014019

    Article  Google Scholar 

  • Kuklinski P, Taylor PD (2008) Are bryozoans adapted for living in the Arctic? In: Hageman SJ, Key MM, Winston JE (eds) Bryozoan Studies 2007, Proceedings of the 14th International Bryozoology Association Conference, Boone, North Carolina, 1–8 July 2007, Virginia Museum of Natural History, Memoir, Special Publication Number, vol 15, pp 101–110

  • Loeng H (1991) Features of the physical oceanographic conditions of the Barents Sea. In: Sakshaug E, Hopkins CCE, Oritsland NA (eds) Proceedings of the Pro Mare Symposium on Polar Marine Ecology, Trondheim, 12–16 May 1990, Polar Res, vol 10, pp 5–18

  • Lombardi C, Cocito S, Hiscock K, Occhipinti-Ambrogi A, Setti M, Taylor PD (2008) Influence of seawater temperature on growth bands, mineralogy and carbonate production in a bioconstructional bryozoan. Facies 54:333–342. doi:10.1007/s10347-008-0143-7

    Article  Google Scholar 

  • Lowenstam HA (1954a) Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc Natl Acad Sci USA 40:39–48. doi:10.1073/pnas.40.1.39

    Article  Google Scholar 

  • Lowenstam HA (1954b) Factors affecting the aragonite:calcite ratios in carbonate secreting marine organisms. J Geol 62:284–322

    Article  Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799

    Google Scholar 

  • Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12. doi:10.1016/0037-0738(88)90108-X

    Article  Google Scholar 

  • Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HL, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104:20837–20856. doi:10.1029/1999JC900082

    Article  Google Scholar 

  • Poluzzi A, Sartori R (1975) Report on the carbonate mineralogy of Bryozoa. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, Hors Srie, vol 3, pp 193–210

  • Pray LC (1958) Fenestrate bryozoan core facies, Mississippian bioherms, southwestern United States. J Sediment Petrol 28:261–273

    Google Scholar 

  • Raven FRS, et al. (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society Report 12/05, 60 pp

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367. doi:10.1038/35030078

    Article  Google Scholar 

  • Ries JB (2005) Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31:445–458. doi:10.1666/0094-8373(2005)031[0445:APICSE]2.0.CO;2

    Article  Google Scholar 

  • Ries JB, Stanley SM, Hardie LA (2006) Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology 34:525–528. doi:10.1130/G22600.1

    Article  Google Scholar 

  • Rogala B, James NP, Reid CM (2007) Deposition of polar carbonates during interglacial highstands on an early Permian shelf, Tasmania. J Sediment Res 77:587–606. doi:10.2110/jsr.2007.060

    Article  Google Scholar 

  • Rucker JB, Carver RE (1969) A survey of the carbonate mineralogy of cheilostome Bryozoa. J Paleontol 43:791–799

    Google Scholar 

  • Rudels B, Jones EP, Anderson LG, Kattner G (1994) On the intermediate depth waters of the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The Polar Oceans and their role in shaping the global environment. Am Geophys Union, Washington, DC, pp 33–46

    Google Scholar 

  • Ryland JS (1970) Bryozoans. Hutchinson, London

    Google Scholar 

  • Sakshaug E (2003) Primary and secondary production in the Arctic seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin Heidelberg New York, pp 57–81

    Google Scholar 

  • Schäfer P, Bader B (2008) Geochemical composition and variability in the skeleton of the bryozoans Cellaria sinuosa (Hassall): biological versus environmental control. In: Hageman SJ, Key MM, Winston JE (eds), Bryozoan Studies 2007, Proceedings of the 14th International Bryozoology Association Conference, Boone, North Carolina, 1–8 July 2007, Virginia Museum of Natural History, Memoir, Special Publication Number, vol 15, pp 269–279

  • Schiermeier Q (2007) The new face of the Arctic. Nature 446:133–135. doi:10.1038/446133a

    Article  Google Scholar 

  • Smith AM (2007) Age, growth and carbonate production by erect rigid bryozoans in Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 256:86–98. doi:10.1016/j.palaeo.2007.09.007

    Article  Google Scholar 

  • Smith AM, Nelson CS (1993) Mineralogical, carbonate geochemical, and diagenetic data for modern New Zealand bryozoans. Department of Earth Sciences, University of Waikato, Occasional Report No 17, pp 1–71

  • Smith AM, Nelson CS, Spencer GH (1998) Skeletal carbonate mineralogy of New Zealand bryozoans. Mar Geol 151:27–46. doi:10.1016/S0025-3227(98)00055-3

    Article  Google Scholar 

  • Smith AM, Key MM, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth Sci Rev 78:287–306. doi:10.1016/j.earscirev.2006.06.001

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19. doi:10.1016/S0031-0182(98)00109-6

    Article  Google Scholar 

  • Taviani M, Reid DE, Anderson JB (1993) Skeletal and isotopic composition and paleoclimatic significance of Late Pleistocene carbonates, Ross Sea, Antarctica. J Sediment Petrol 63:84–90

    Google Scholar 

  • Taylor JD, Reid DG (1990) Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance. Hydrobiologia 193:199–215. doi:10.1007/BF00028077

    Article  Google Scholar 

  • Taylor PD, Allison PA (1998) Bryozoan carbonates in space and time. Geology 26:459–462. doi:10.1130/0091-7613(1998)026<0459:BCTTAS>2.3.CO;2

    Article  Google Scholar 

  • Thiel H, Pörtner HO, Arntz WE (1996) Marine life at low temperatures—a comparison of polar and deep-sea characteristics. In: Uiblein F, Ott J, Stachowitsch M (eds) Deep-sea and extreme shallow-water habitats: affinities and adaptations. Biosystematics and Ecology Series, vol 11, pp 183–219

  • Wass RE, Conolly JR, MacIntyre RJ (1970) Bryozoan carbonate sand continuous along southern Australia. Mar Geol 9:63–73. doi:10.1016/0025-3227(70)90080-0

    Article  Google Scholar 

  • Wejnert KE, Smith AM (2008) Within-colony variation in skeletal mineralogy of Adeonellopsis sp. (Cheilostomata: Bryozoa) from New Zealand. NZ J Mar Freshwater Sci 42:389–395

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Caroline Kirk and Gordon Cressey for help with XRD and mineralogical data analysis. The authors would also like to thank Bjorn Berning and an anonymous reviewer for comments leading to an improved manuscript. The study has been completed thanks to the financial support to from the EU programmes BRYOARC and DYNARC, as well as a grant from the Polish Ministry of Science and Higher Education (NN304 270434) to PK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kuklinski.

Appendix

Appendix

Mineralogy and mole percentage of Mg in the skeletons of the Arctic bryozoan species analysed for this study. All species belong to the order Cheilostomata except for those indicated by an asterisk which are Cyclostomata (n.a.—data not available).

 

Species name

Locality

Latitude

Longitude

Depth (m)

Aragonite %

Mol% MgCO3

Amphiblestrum trifolium (Wood, 1844)

Spitsbergen

77°N

15°E

n.a.

0

4.47

Arctonula arctica (Sars, 1851)

Spitsbergen

76°57′N

15°55′E

12

0

0

Bidenkapia spitsbergensis (Bidenkap, 1897)

Spitsbergen

77°N

15°E

n.a.

0

1.46

Buffonellaria arctica (Berning and Kuklinski, 2008)

Spitsbergen

78°59′N

10°58′E

12

0

7.44

Bugulopsis peachi (Busk, 1851)

Chukchi Sea

n.a.

n.a.

n.a.

0

3.41

Callopora craticula (Alder, 1856)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

0.1

Callopora craticula (Alder, 1856)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

0.51

Callopora smitti (Kluge, 1946)

Spitsbergen

76°40′N

15°40′E

n.a.

0

3.82

Carbasea carbasea (Ellis and Solander, 1786)

Spitsbergen

76°57′N

15°55′E

12

0

7.13

Cauloramphus sp.

Laptev Sea

74°30.0′N

137°05.0′E

22

0

0.92

Cauloramphus intermedius (Kluge, 1962)

Spitsbergen

76°57′N

15°55′E

12

0

4.26

Celleporina nordenskjoldi (Kluge, 1929)

Laptev Sea

74°30.0′N

137°05.0′E

22

0

2.49

Celleporina surcularis (Packard, 1863)—base

Spitsbergen

79°01.0′N

11°31.8′E

~200

0

4.84

Celleporina surcularis (Packard, 1863)—tip

Spitsbergen

79°01.0′N

11°31.8′E

~200

0

3.92

Celleporella hyalina (Linnaeus, 1767)

Spitsbergen

78°11′N

15°08′E

12

0

0

Celleporella hyalina (Linnaeus, 1767)

Greenland

73°20′N

54°20′W

11–36

0

0

Celleporella hyalina (Linnaeus, 1767)

Greenland

73°20′N

54°20′W

11–37

0

0

Celleporella hyalina (Linnaeus, 1767)

Greenland

73°20′N

54°20′W

11–38

0

0

Cheilopora sincera (Smitt, 1867)

Laptev Sea

74°24.5′N

131°01.3′E

30

0

3.78

Cheilopora sincera (Smitt, 1867)

Laptev Sea

75°48.9′N

134°23.2′E

43

0

0.23

Cheilopora sincera (Smitt, 1867)

Laptev Sea

74°30.0′N

137°05.0′E

22

0

1.16

Cribrilina annulata (Fabricius, 1780)

Northern Norway

69°49′N

19°00′E

1

0

6.82

Cribrilina annulata (Fabricius, 1780)

Spitsbergen

76°57′N

15°55′E

12

0

6.51

Cribrilina cryptooecium (Norman, 1903)

Northern Norway

69°49′N

19°00′E

1

0

4.57

Cribrilina cryptooecium (Norman, 1903)

Northern Norway

69°49′N

19°00′E

1

0

4.6

Cribrilina cryptooecium (Norman, 1903)

Northern Norway

69°49′N

19°00′E

1

0

3.75

Cribrilina spitzbergensis (Norman, 1903)

Spitsbergen

78°59′N

10°58′E

210

0

3.82

Cylindroporella tubulosa (Norman, 1868)

Spitsbergen

76°57′N

15°55′E

12

0

4.98

Cylindroporella tubulosa (Norman, 1868)

Spitsbergen

78°10′N

14°40′E

~100

0

4.09

Cylindroporella tubulosa (Norman, 1868)

Spitsbergen

78°10′N

14°40′E

~100

0

3.34

Cystisella saccata (Busk, 1856)

Spitsbergen

77°N

15°E

n.a.

0

6.45

Cystisella saccata (Busk, 1856)

Laptev Sea

74°29.9′N

139°41.3′E

25

0

5.39

Cystisella saccata (Busk, 1856)

Laptev Sea

74°18.3′N

129°32.6′E

44

0

0.68

Cystisella saccata (Busk, 1856)base

Spitsbergen

78°10′N

14°40′E

~100

0

3.89

Cystisella saccata (Busk, 1856)tip

Spitsbergen

78°10′N

14°40′E

~100

0

4.06

Cystisella saccata (Busk, 1856)base

Spitsbergen

77°N

15°E

n.a.

0

5.8

Cystisella saccata (Busk, 1856)base

Spitsbergen

77°N

15°E

n.a.

0

4.91

Cystisella saccata (Busk, 1856)base

Laptev Sea

74°30.0′N

137°05.0′E

22

0

3.48

Cystisella saccata (Busk, 1856)—tip

Spitsbergen

77°N

15°E

n.a.

0

6.04

Cystisella saccata (Busk, 1856)—tip

Laptev Sea

74°30.0′N

137°05.0′E

22

0

3.13

Dendrobeania fruticosa (Packard, 1863)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

5.32

Dendrobeania murrayana (Johnston, 1847)

Spitsbergen

76°57′N

15°55′E

6

0

3.17

Doryporella spathulifera (Smitt, 1868)

Spitsbergen

79°32′N

18°46′E

20

0

1.97

Einhornia arctica (Borg, 1931)

Spitsbergen

79°03′N

11°39′E

10

0

4.47

Einhornia arctica (Borg, 1931)

Spitsbergen

76°57′N

15°55′E

6

0

5.39

Escharella sp.

Spitsbergen

76°57′N

15°55′E

6

0

4.19

Escharella sp.

Spitsbergen

76°57′N

15°55′E

6

0

4.09

Escharoides jacksoni (Waters, 1900)

Laptev Sea

n.a.

n.a.

n.a.

0

4.33

Eucratea loricata (Linnaeus, 1758)

Spitsbergen

76°57′N

15°55′E

6

0

6.38

Eucratea loricata (Linnaeus, 1758)

Spitsbergen

76°57′N

15°55′E

6

0

6.31

Eucratea loricata (Linnaeus, 1758)

Laptev Sea

n.a.

n.a.

n.a.

0

5.9

Eucratea loricata (Linnaeus, 1758)

Laptev Sea

73°29.9′N

131°39.9′E

25

0

3.82

Eucratea loricata (Linnaeus, 1758)

Laptev Sea

74°29.9′N

139°41.3′E

25

0

2.42

Flustra nordenskjoldi (Kluge, 1929)

Bering Sea

n.a.

n.a.

n.a.

0

3.31

Flustra serrulata (Busk, 1878)

Laptev Sea

75°48.9′N

134°23.2′E

43

0

5.97

Flustra serrulata (Busk, 1878)

Laptev Sea

74°24.5′N

131°01.3′E

30

0

5.35

Flustra serrulata (Busk, 1878)

Laptev Sea

75°18.3′N

129°32.6′E

44

0

3.13

Harmeria scutulata (Busk, 1855)

Spitsbergen

78°11′N

15°08′E

12

0

1.39

Harmeria scutulata (Busk, 1855)

Spitsbergen

78°11′N

15°08′E

12

0

1.36

Harmeria scutulata (Busk, 1855)

Spitsbergen

78°11′N

15°08′E

12

0

1.74

Harmeria scutulata (Busk, 1855)

Spitsbergen

76°56′N

15°48′E

6

0

5.05

Harmeria scutulata (Busk, 1855)

Greenland

73°20′N

54°20′W

11–36

0

1.09

Harmeria scutulata (Busk, 1855)

Greenland

73°20′N

54°20′W

11–36

0

0.68

Harmeria scutulata (Busk, 1855)

Greenland

73°20′N

54°20′W

11–36

0

1.16

Harmeria scutulata (Busk, 1855)

Northern Norway

69°49′N

19°00′E

1

0

5.35

Harmeria scutulata (Busk, 1855)

Northern Norway

69°49′N

19°00′E

1

0

5.56

Harmeria scutulata (Busk, 1855)

Northern Norway

69°49′N

19°00′E

1

0

6.41

*Heteropora pelliculata (Waters, 1879)

Bering Sea

n.a.

n.a.

n.a.

0

1.26

Hincksipora spinulifera (Hincks, 1889)

Spitsbergen

78°59′N

10°58′E

210

0

6.96

Hincksipora spinulifera (Hincks, 1889)

Spitsbergen

78°59′N

10°58′E

210

0

5.76

Hincksipora spinulifera (Hincks, 1889)

Spitsbergen

79°32′N

18°46′E

n.a.

0

6.31

Hippodiplosia ussowi (Kluge, 1908)

Barents Sea

n.a.

n.a.

n.a.

0

5.9

Hippoporella hippopus (Smitt, 1867)

Spitsbergen

79°32′N

18°46′E

20

0

6.48

Hippoporella hippopus (Smitt, 1867)

Spitsbergen

78°10′N

14°40′E

~100

0

4.26

Hippoporella hippopus (Smitt, 1867)

Spitsbergen

78°10′N

14°40′E

~100

0

4.5

Hippothoa arctica (Kluge, 1906)

Spitsbergen

78°59′N

10°58′E

210

0

0

Hippothoa arctica (Kluge, 1906)

Spitsbergen

78°59′N

10°58′E

210

0

0

Hippothoa expansa (Dawson, 1859)

Spitsbergen

78°59′N

10°58′E

210

0

0.54

*Hornera lichenoides (Linneaus, 1758)

Spitsbergen

n.a.

n.a.

n.a.

0

5.01

*Idmidronea atlantica (Forbes in Johnston, 1847)

Spitsbergen

77°N

15°E

n.a.

0

3.31

Lepraliodes nordlandica (Nordgaard, 1905)

Spitsbergen

78°59′N

10°58′E

210

10.37

4.84

Lepraliodes nordlandica (Nordgaard, 1905)

Spitsbergen

n.a.

n.a.

n.a.

8.16

7.4

Lepraliella contigua (Smitt, 1868)

Spitsbergen

79°32′N

18°46′E

20

0

6.82

*Lichenoporid sp.

Spitsbergen

78°11′N

15°08′E

12

0

2.52

*Lichenoporid sp.

Spitsbergen

78°11′N

15°08′E

12

0

4.09

*Lichenoporid sp.

Spitsbergen

78°11′N

15°08′E

12

0

3.48

Microporella klugei (Kuklinski and Taylor, 2008)

Spitsbergen

78°11′N

15°08′E

12

0

6.38

Microporella klugei (Kuklinski and Taylor, 2008)

Spitsbergen

78°10′N

14°40′E

~100

0

3.78

Microporella klugei (Kuklinski and Taylor, 2008)

Spitsbergen

78°10′N

14°40′E

~100

0

3.34

Microporella arctica (Norman, 1903)

Spitsbergen

78°59.5′N

11°58.9′

10

0

4.3

Myriapora orientalis (Kluge, 1929)

Bering Sea

n.a.

n.a.

n.a.

0

0.75

Myriapora subgracilis (d’Orbigny, 1852)—base

Spitsbergen

n.a.

n.a.

n.a.

0

4.16

Myriapora subgracilis (d’Orbigny, 1852)—tip

Spitsbergen

n.a.

n.a.

n.a.

0

3.27

Myriozoella costata (Kluge, 1962)

Spitsbergen

78°59′N

10°58′E

210

0

4.53

Myriozoella costata (Kluge, 1962)

Spitsbergen

78°59′N

10°58′E

210

0

4.36

Myriozoella costata (Kluge, 1962)

Spitsbergen

78°59′N

10°58′E

210

0

5.35

Myriozoella costata (Kluge, 1962)

Spitsbergen

79°32′N

18°46′E

20

0

2.86

Myriozoella crustacea (Smitt, 1868)

Spitsbergen

76°57′N

15°55′E

12

0

2.86

*Oncousoecia canadensis (Osburn, 1933)

Spitsbergen

78°59′N

10°58′E

210

0

5.76

Pachyegis princeps (Norman, 1903)

Spitsbergen

77°N

15°E

n.a.

7.21

8.87

Pachyegis princeps (Norman, 1903)

East-Spitsbergen

n.a.

n.a.

n.a.

17.39

6.99

Pachyegis princeps (Norman, 1903)

Spitsbergen

n.a.

n.a.

n.a.

8.91

6.82

Parasmittina “trispinosa” (Johnston, 1838)

Spitsbergen

78°59′N

11°58′E

10

10.57 ?

6.79

Parasmittina “trispinosa” (Johnston, 1838)

Spitsbergen

79°N

11°E

n.a.

0

4.47

Parasmittina “trispinosa” (Johnston, 1838)

Spitsbergen

79°N

11°E

n.a.

0

5.53

Porella proboscidea (Hincks, 1888)

Spitsbergen

78°59′N

10°58′E

n.a.

0

1.63

Porella sp.

Spitsbergen

n.a.

n.a.

n.a.

0

7.47

Posterula sarsi (Smitt, 1867)—base

Spitsbergen

78°59′N

10°58′E

210

0

8.7

Posterula sarsi (Smitt, 1867)—tip

Spitsbergen

78°59′N

10°58′E

210

0

5.56

Pseudoflustra birulai (Kluge, 1929)

Kara Sea

n.a.

n.a.

n.a.

0

4.53

Pseudoflustra solida (Stimpson, 1854)

Kara Sea

n.a.

n.a.

n.a.

0

3.82

Pseudoflustra solida (Stimpson, 1854)

Kara Sea

n.a.

n.a.

n.a.

0

4.67

Raymondcia bella (Busk, 1860)

Spitsbergen

78°59′N

10°58′E

210

11.76

8.08

Raymondcia bella (Busk, 1860)

Spitsbergen

79°32′N

18°46′E

n.a.

12.87

7.44

Raymondcia rigida (Lorenz, 1886)

Spitsbergen

79°01.8′N

11°49.8′E

10

0

6.82

Raymondcia rigida (Lorenz, 1886)

Spitsbergen

76°57′N

15°55′E

12

0

5.8

Raymondcia rigida (Lorenz, 1886)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

3.78

Reteporella beaniana (King, 1846)

Northern Norway

71°N

25°E

n.a.

0

5.69

Reteporella cellulosa (Linneaus, 1767)

Spitsbergen

78°59′N

10°58′E

210

0

4.7

Rhamphostomella costata (Lorenz, 1886)

Spitsbergen

79°01.8′N

11°49.8′E

10

0

3.58

Rhamphostomella costata (Lorenz, 1886)

Spitsbergen

n.a.

n.a.

n.a.

0

3.17

Rhamphostomella costata (Lorenz, 1886)

Greenland

73°20′N

54°20′W

11–36

0

1.8

Rhamphostomella plicata (Smitt, 1868)

Spitsbergen

77°N

15°E

n.a.

0

3.92

Schizoporella pachystega Kluge, 1929

Spitsbergen

78°10′N

14°40′E

~100

0

5.69

Schizoporella pachystega (Kluge, 1929)

Spitsbergen

78°59′N

10°58′E

210

0

5.8

Schizoporella perforata (Kluge, 1952)

Spitsbergen

78°59′N

10°58′E

210

0

4.98

Schizoporella stylifera (Levinsen, 1887)

Spitsbergen

78°59′N

10°58′E

210

0

7.84

Scrupocellaria arctica (Busk, 1855)

Spitsbergen

n.a.

n.a.

n.a.

0

3.41

Scrupocellaria orientalis (Kluge, 1955)

Spitsbergen

76°57′N

15°55′E

12

0

2.93

Securiflustra securifrons (Pallas, 1766)

Spitsbergen

79°01′N

11°49′E

~50

0

6.48

Semibugula birulai (Kluge, 1929)

Chukchi Sea

n.a.

n.a.

n.a.

0

0

Septentriopora karasi (Kuklinski and Taylor, 2006)

Spitsbergen

76°57′N

15°55′E

12

0

4.57

Smittina minuscula (Smitt, 1868)

Spitsbergen

79°03′N

11°39′E

n.a.

0

3.75

Smittina minuscula (Smitt, 1868)

Spitsbergen

79°03′N

11°39′E

n.a.

0

2.66

Stomachetosella cruenta (Busk, 1854)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

6.86

Stomachetosella cruenta (Busk, 1854)

Spitsbergen

76°57′N

15°55′E

12

0

3.54

Stomachetosella cruenta (Busk, 1854)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

5.11

Tegella arctica (d’Orbigny, 1853)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

4.43

Tegella arctica (d’Orbigny, 1853)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

0.98

Tegella arctica (d’Orbigny, 1853)

Greenland

73°20′N

54°20′W

11–36

0

0

Tegella cf. unicornis (Fleming, 1828)

Laptev Sea

74°29.8′N

134°03.2′E

30

0

0.44

Tegella cf. unicornis (Fleming, 1828)

Laptev Sea

74°29.8′N

134°03.2′E

30

0

3.41

Tegella cf. unicornis (Fleming, 1828)

Laptev Sea

74°29.9′N

139°41.3′E

25

0

2.35

Tricellaria ternata (Ellis and Solander, 1786)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

2.28

Tricellaria ternata (Ellis and Solander, 1786)

Spitsbergen

78°59.5′N

11°58.9′E

10

0

3.03

Tricellaria ternata (Ellis and Solander, 1786)

Spitsbergen

78°15′N

13°55′E

n.a.

0

3.85

*Tubulipora fructuosa (Gostilovskaya, 1955)

White Sea

n.a.

n.a.

n.a.

0

1.09

*Tubulipora soluta (Kluge, 1946)

Kara Sea

n.a.

n.a.

n.a.

0

4.02

Umbonula littoralis (Hastings, 1944)

Northern Norway

69°49′N

19°00′E

1

0

6.92

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuklinski, P., Taylor, P.D. Mineralogy of Arctic bryozoan skeletons in a global context. Facies 55, 489–500 (2009). https://doi.org/10.1007/s10347-009-0179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-009-0179-3

Keywords

Navigation