Skip to main content
Log in

Identifying hydrological pre-conditions and rainfall triggers of slope failures at catchment scale for 2014 storm events in the Ialomita Subcarpathians, Romania

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper addresses a regional-scale analysis of the rainfall-induced landslides for 2014 storm events based on detailed hydro-meteorological data set in the Ialomita Subcarpathians. This area is located in the western part of the Curvature Subcarpathians, a complex geological and geomorphic unit in Romania. The high temporal frequency of landslide events in the last decades (1997, 1998, 2005, 2006, 2010, 2012 and 2014) leads us to considerer that these processes play a major role in the evolution of this area’s landscape where the most frequent landforms are rotational slides, translational slides, mudslides and complex movements. The rainy period between April and August 2014 induced numerous flash floods and landslides in this specific area that resulted to severe economic losses estimated to 8 million euros in Dambovita County. Spatially distributed rainfall during the main storm events estimated from adjusted radar-based precipitation was used to investigate the hydro-meteorological conditions that triggered or not landslides in the Ialomita Subcarpathians. Hydrological pre-conditions were assessed by hourly in situ soil moisture measurements at local scale and hydrological modelling at regional scale. ModClark semi distributed model implemented in HEC HMS software that integrates radar data was used to analyse catchment response to the main rainfall event that resulted to landslides in 2014. Analysis between rainfall, soil moisture conditions and direct runoff was performed for identifying the contribution of the hydro-meteorologic conditions to landsliding process in the Ialomita Subcarpathians. A detailed landslide inventory based on field mapping and visual interpretation of satellite and aerial images was completed with information from local authorities and mass media. Despite the limited number of landslide events, this study allows a detailed insight of understanding the influence of rainfall in landslide occurrence in this specific area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Aleotti P, Baldelli P, Bellardone G, Quaranta N, Tresso F, Troisi C, Zani A (2002) L’evento meteorico del 13–16 ottobre 2000 nel Piemonte Settentrionale: analisi delle precipitazioni e dei processi di versante indotti. Geologia Tecnica e Ambientale 1:15–25

    Google Scholar 

  • Antofie T, (2007) Studiu climatic şi topoclimatic în Subcarpaţii Ialomiţei, PhD Thesis, Universitatea din Oradea, Romania

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda- Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31

    Article  Google Scholar 

  • Bălteanu D (1983) Experimentul de teren în geomorfologie (Field experiment in geomorphology). Academiei Române, Bucureşti, p 156

    Google Scholar 

  • Bălteanu D, Micu M (2009) Landslide investigation: from morphodynamic mapping to hazard assessment. A case-study in the Romanian Subcarpathians: Muscel Catchment. In: Landslide processes: from geomorphologic mapping to dynamic modeling. CERG Editions, Strasbourg, France, pp 235–241

    Google Scholar 

  • Baum RL, McKenna J.P., Godt JW, Harp EL, and McMullen SR (2005) Hydrologic monitoring of landslide-prone coastal bluffs near Edmonds and Everett, Washington, 2001-2004:, U.S. Geological Survey Open-File Report 2005-1063, 42 pp.

  • Baum RL, Savage WZ, and Godt W (2008) TRIGRS—a FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis, version 2.0, US Geological Survey Open-File Report 2008-1159, pp 75

  • Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J Geophys Res 115:F03013

    Article  Google Scholar 

  • Bhattacharya AK, McEnroe BM, Zhao H, Kumar D, Shinde S (2012) Modclark model: improvement and application. IOSR J Eng 2(7):100–118

    Article  Google Scholar 

  • Bogaard TA, Greco R (2015) Landslide hydrology: from hydrology to pore pressure. WIREs Water 3:439–459

    Article  Google Scholar 

  • Bonham–Carter GF (1994) Geographic information system for geoscientists: modelling with GIS. Delta Printing Ltd, Ontario, p 398

    Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458

    Article  Google Scholar 

  • Burcea S, Cheval S, Dumitrescu A, Antonescu B, Bell A, Breza T (2012) Comparison between radar estimated and rain gauge measured precipitation in the Moldavian Plateau. Environ Eng Manag J 11(4):723–731

    Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann A 62:23–27

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16(5):427–445

    Article  Google Scholar 

  • Chiţu Z (2010) Predicţia spaţio-temporală a hazardului la alunecări de teren utilizând tehnici S.I.G. Studiu de caz arealul subcarpatic dintre Valea Prahovei şi Valea Ialomiţei (Spatial and temporal prediction of landslide hazard using GIS. Case-study: the Subcarpathian area between the Prahova and Ialomiţa valleys). Manuscript PhD thesis, University of Bucharest, 295 pp

  • Chitu Z, Istrate A, Adler MJ, Şandric I, Olariu B, Mihai B. (2015) Comparative study of the methods for assessing landslide susceptibility in Ialomiţa Subcarpathians, Romania in Engineering Geology for Society and Territory, IAEG XII Congress Volumes, 2014, Springer Verlag Edition, ISBN 978-3-319-10303-7, pp 1205-1209

  • Chumchean S, Sharma A, Seed A (2006) An integrated approach to error correction for real-time radar-rainfall estimation. J Atmos Ocean Technol 23:67–79

    Article  Google Scholar 

  • Chung CF, Fabbri AG, van Westen CJ (1995) In: Carrara A, Guzzetti F (eds) Multivariate regression analysis for landslide hazard zonation, geographical information systems in assessing natural hazards. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 107–134

    Chapter  Google Scholar 

  • Corominas J, Moia H (2008) A review of assessing frequency for hazard zoning purposes. Eng Geol 102:193–213

    Article  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River ting recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93

    Article  Google Scholar 

  • Damian R (2003) Controlul structural geologic și morfologic în stabilitatea versanților subcarpatici: condiții climatice și hidrologice, in Armas et al. Vulnerabilitatea versanților la alunecări de teren în sectorul subcarpatic al Văii Prahova, București, Fundația Romania de Maine, ISBN973-582-859-6

  • Dikau R, Brunsden D, Schrott L, Ibsen M-L (1996) Landslide recognition. Identification, movement and causes. Wiley & Sons, Chichester, pp 251

  • Dragotă C, Micu M, Micu D (2008) The relevance of pluvial regime for landslides genesis and evolution. Case-study: Muscel Basin (Buzău Subcarpathians), Romania. Present Environ Sustain Dev 2:242–257

    Google Scholar 

  • Fulton RA, Breidenbach JP, Seo DJ, Miller DA, O’Bannon T (1998) The WSR-88D rainfall algorithm. Weather Forecast 13:377–395

    Article  Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665

    Article  Google Scholar 

  • Giannecchini R (2005) Rainfall triggering soil slips in the southern Apuan Alps (Tuscany, Italy). Adv Geosci 2:21–24

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842

    Article  Google Scholar 

  • Godt JG, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Process Landf 31:97–110

    Article  Google Scholar 

  • Godt JW, Baum RB, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102:214–226

    Article  Google Scholar 

  • Griffiths J (2014) Catchment yield estimation. In: Eslamian S (ed) Handbook of engineering hydrology volume I: fundamentals and applications. CRC Press, London, pp 1–19. ISBN 9781466552357

    Chapter  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides. Meteorog Atmos Phys 98:239–267

    Article  Google Scholar 

  • Harrison DL, Driscoll SJ, Kitchen M (2000) Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor Appl 6:135–144

    Article  Google Scholar 

  • HEC, 2000 “HEC HMS, Technical Reference Manual”, US Army Corps of Engineers Hydrologic Engineering Center 4

  • Hong YM, Wan S (2011) Forecasting groundwater level fluctuations for rainfall-induced landslide. Nat Hazards 57:167–184

    Article  Google Scholar 

  • Ichim I, Bojoi I, (1970) Accelerarea modelării reliefului din bazinele hidrografice Pângăraţi şi Oanţu ca urmare a ploii torenţiale din ziua de 28 august 1968, Lucrările Staţiunii de Cercetări Biologice, Geologice şi Geografice „Stejarul”, 3:105-115

  • Istrate A, Franculeasa M, Pehoiu G, (2010) Assessment and forecast stability of slopes in the Carpathian and sub-Carpathian area of Dâmbovița and Prahova. Classification and risk factors, in Water and Geoscience, Proceedings of the 4th IASME/WSEAS International Conference on Geology and Seismology, 208-213

  • Iverson RM, Major JJ (1987) Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations. Geol Soc Am Bull 99(4):579–594

    Article  Google Scholar 

  • Johnson LE (2009) Geographic information systems in water resources engineering, Taylor-Francis Group. CRC Press, Boca Raton, FL, p 328. ISBN 9781420069136

    Google Scholar 

  • Jurchescu M (2012) Bazinul morfohidrografic al Oltet¸ului. Studiu de geomorfologie aplicata˘ (The Oltet¸ drainage basin. Study of applied geomorphology). Manuscript Ph.D. thesis. University of Bucharest (in Romanian)

  • Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann A 75(1-2):13–23

    Article  Google Scholar 

  • Li WC, Dai FC, Wei YQ, Wang ML, Min H, Lee LM (2015) Implication of subsurface flow on rainfall-induced landslide: a case study. Landslides 13:1–15

    Google Scholar 

  • Lissak C, Maquaire O, Malet JP (2014) Piezometric thresholds for triggering landslides along the Normandy coast, France/Seuils piézométriques pour le déclenchement de glissements de terrain sur les versants côtiers normands, France. Géomorphologie: Relief Processus Environnement 2:145–158

    Article  Google Scholar 

  • Macovei Gh, and Botez Gh, (1926) Asupra fenomenului de alunecări și prăbușiri de teren din judetul Râmnicu Sărat, Dări de seama Inst.Geol. Rom., VI, 1914-1915, Bucuresti

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(4):485–495

    Article  Google Scholar 

  • Matsushi Y, Matsukura Y (2007) Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan. Earth Surf Processes 32:1308–1322

    Article  Google Scholar 

  • Micu M (2008) Evaluarea hazardului legat de alunecari de teren in Subcarpatii dintre Buzau si Teleajen (Landslide Hazard Assessment in the Buzău – Teleajen Subcarpathians). Manuscript PhD thesis, Institute of Geography, Bucharest, 242 pp (in Romanian)

  • Micu M, Jurchescu M, Micu D, Zarea R, Zumpano V, Bălteanu D (2014) A morphogenetic insight into a multi-hazard analysis: Bâsca Mare landslide dam. Landslides 11:1131–1139

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically-based model for topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Nilsen TH, Taylor FA, and Dean RM (1976) Natural conditions that control landsliding in the San Francisco Bay region—an analysis based on data from the 1968–69 and 1972–73 rainy seasons. U.S. Geological Survey Bulletin 1424, 34 pp

  • Paudel M, Nelson EJ, Scharffenberg W (2009) Comparison of lumped and quasidistributed Clark runoff models using the SCS curve number equation. J Hydrol Eng 14(10):1098–1106

    Article  Google Scholar 

  • Peters JC, Easton DJ (1996) Runoff simulation using radar rainfall data. Water Resour Bull 32:753–760

    Article  Google Scholar 

  • Ponziani F, Pandolfo C, Stelluti M, Berni N, Brocca L, Moramarco T (2012) Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (central Italy). Landslides 9:229–237

    Article  Google Scholar 

  • Prokešová R, Medvedová A, Táborík P, Snopková Z (2013) Towards hydrological triggering mechanisms of large deep-seated landslides. Landslides 10(3):239–254

    Article  Google Scholar 

  • Şandric I (2008) Sistem informaţional geografi c temporal pentru analiza hazardelor naturale. O abordare bayesiană cu propagare a erorilor (Temporal geographic information system for the analysis of natural hazards. A Bayesian approach with error propagation). Manuscript PhD thesis, University of Bucharest, 243 p (in Romanian)

  • Segoni S, Rossi G, Rosi A, Catani F (2014) Landslides triggered by rainfall: a semiautomated procedure to define consistent intensity-duration thresholds. Comput Geosci 63:123–131

    Article  Google Scholar 

  • Ştefănescu M (1995) Stratigraphy and structure of Cretaceous and Paleogene flysch deposits between Prahova an Ialomiţa valleys, Romanian Journal of Tectonics and Regional Geology. Institutul Geologic al României, Bucureşti

    Google Scholar 

  • Surdeanu V (1998) Geografia terenurilor degradate. Alunecari de teren, Edit. Presa Universitară Clujeana, Cluj-Napoca, 274 p

  • van Asch TWJ, Buma J, van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32

    Article  Google Scholar 

  • Vieira BC, Fernandes NF, Filho OA (2010) Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Nat Hazards Earth Syst Sci 10:1829–1837

    Article  Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains. In: Debris flow/avalanches: process, recognition, and mitigation (Costa JE, Wieczorek GF, eds). Geological Society of America, Reviews in Engineering Geology, 7: 93–104

  • Wieczorek GF (1996) Landslide triggering mechanisms. In: Turner, Shuster (Eds.), Landslides: investigation and mitigation. Transportation Research Board-National Research Council, Special Report, vol. 247, pp. 76 – 90

  • Wilson RC, Wieczorek GF (1995) Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ Eng Geosci 1(1):11–27

    Article  Google Scholar 

  • Wilson RC, Torikai JD, and Ellen SD (1992) Development of rainfall warning thresholds for debris flows in the Honolulu District, Oahu: U.S. Geological Survey Open-file Report 92-521, 45 pp

  • Zugrăvescu D, Polonic G, Horomnea M, Dragomir V (1998) Recent vertical movements on the Romanian territory, major tectonic compartments and their relative dynamics. Revue Roumaine de Geophysique, seria Geofizica 42:3–14

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through the research project PSMLAND, code PN II –RU-PD-2013-3-0624. We express our gratitude to the anonymous reviewers for their useful comments, which considerably improved the original paper manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenaida Chitu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitu, Z., Bogaard, T., Busuioc, A. et al. Identifying hydrological pre-conditions and rainfall triggers of slope failures at catchment scale for 2014 storm events in the Ialomita Subcarpathians, Romania. Landslides 14, 419–434 (2017). https://doi.org/10.1007/s10346-016-0740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0740-4

Keywords

Navigation