Skip to main content

Advertisement

Log in

On the role of volcanic ash deposits as preferential submarine slope failure planes

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Volcanic ash deposits have been proposed to potentially liquefy and act as preferential failure planes during submarine landslides along active margins. However, particle angularity and surface roughness of volcanic material significantly influence its shear behavior and hence do not unambiguously support this contention. This manuscript challenges the hypothesis of preferential failure of ash layers by conducting drained and undrained monotonic and undrained cyclic triaxial shear experiments (σn < 1 MPa) on volcanic silts/sands and quartz sands as a reference material. Results attest the key role of particle geometry and particle strength in sediment stability. Decreased failure susceptibility of volcanic material compared to smoothed, rounded, and hard-grained quartz sand was attributed to roughness, angularity, and low crushability at low effective confining stresses in drained monotonic and undrained cyclic shear experiments. However, in undrained monotonic shear experiments on soft-grained and porous volcanic material, we observe major weakening due to crushability and excess pore pressure buildup related to particle internal water expulsion. In contrast, hard-grained angular volcanic particles are less susceptible to liquefaction than grain-size equivalent-rounded quartz sand, and may in fact be favorable for seismic strengthening, in which ground shaking causes enhanced settling rather than failure. Our data suggest that ash layers may not serve as preferential failure planes in the majority of earthquake-triggered submarine landslides along active margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adoo M, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Article  Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America euler vector. Earth Planet Sci Lett 171:329–334. doi:10.1016/S0012-821X(99)00173-9

    Article  Google Scholar 

  • Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique, In, pp 99–112

    Google Scholar 

  • Bernhardt A, Melnick D, Hebbeln D, Lückge A, Strecker MR (2015) Turbidite paleoseismology along the active continental margin of Chile—feasible or not? Quat Sci Rev 120:71–92. doi:10.1016/j.quascirev.2015.04.001

    Article  Google Scholar 

  • Biscontin G, Pestana JM, Nadim F (2004) Seismic triggering of submarine slides in soft cohesive soil deposits. Mar Geol 203:341–354

    Article  Google Scholar 

  • Bolton MD (1986) The strength and dilatancy of sand. Geotechnique 36:65–78

    Article  Google Scholar 

  • Carmelo F, Diego CLP, Sergio P (1995) A pluvial deposition method to reconstitute well-graded sand specimens.

  • Castro G (1969) Liquefaction of sands. In. Harvard University

  • Castro G (1975) Liquefaction and cyclic mobility of saturated sands. J Geotech Eng 101:551–569

    Google Scholar 

  • Castro G, Poulos HG (1977) Factors affecting liquefaction and cyclic mobility. J Geotech Eng Div 103:501–506

    Google Scholar 

  • Cisternas M, Atwater BF, Torrejon F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T, Shishikura M, Rajendran CP, Malik JK, Rizal Y, Husni M (2005) Predecessors of the giant 1960. Chile Earthq 437:404–407

    Google Scholar 

  • Coop MR, Sorensen KK, Freitas TB, Georgoutsos G (2004) Particle breakage during shearing of a carbonate sand. Geotechnique 54:157–163

    Article  Google Scholar 

  • Deutsches Institut für Normung (1996) Baugrund, Untersuchung von Bodenproben - Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung. In: DIN-Norm 1826. Beuth Berlin

  • Deutsches Institut für Normung (2002) Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit. In: DIN-Norm 18137–3. Beuth, Berlin

  • Dobry R, Ladd RS, Yokel FY, Chung RM, Powell D (1982) Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method

  • Expedition 333 Scientists (2012) Expedition 333 summary. In: Henry, P., Kanamatsu, T., Moe, K., and the Expedition 333 Scientists, Proc. IODP, 333:Tokyo (Integrated Ocean Drilling Program Management International, Inc.). In: IODP Management International IfIODP (ed) IODP Preliminary Reports, 333

  • Expedition 340 Scientists (2012) Lesser Antilles volcanism and landslides: implications for hazard assessment and long-term magmatic evolution of the arc. In: IODP Management International IfIODP (ed) IODP Preliminary Reports, 340

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin

    Book  Google Scholar 

  • Guo P, Su X (2007) Shear strength, interparticle locking, and dilatancy of granular materials. Can Geotech J 44:579–591

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59

    Article  Google Scholar 

  • Hance JJ (2003) Development of a database and assessment of seafloor slope stability based on published literature. In: Faculty of the Graduate School. The University of Texas, Austin, Texas, p 265

  • Handin J (1969) On the Coulomb-Mohr failure criterion. J Geophys Res 74:5343–5348. doi:10.1029/JB074i022p05343

    Article  Google Scholar 

  • Harders R, Kutterolf S, Hensen C, Moerz T, Brueckmann W (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 11:Q05S23. doi:10.1029/2009GC002844

    Google Scholar 

  • Huhnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362

    Article  Google Scholar 

  • Hyodo M, Hyde AFL, Aramaki N (1998) Liquefaction of crushable soils. Geotechnique 48:527–543

    Article  Google Scholar 

  • Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes

  • Ikari MJ, Kopf AJ (2011) Cohesive strength of clay-rich sediment. Geophys Res Lett 38:5. doi:10.1029/2011GL047918

    Article  Google Scholar 

  • Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation and liquefaction of sands under cyclic stresses. Soils Found 15:29–44

    Article  Google Scholar 

  • Kopf A, Alves T, Heesemann B, Kaul N, Kock I, Krastel S, Reichelt M, Schäfer R, Stegmann S, Strasser M, Thölen M (2006) Report and preliminary results of Poseidon Cruise P336: CREST-Cretan sea tectonics and sedimentation. Berichte aus dem Fachbereich Geowissenschaften, Univ Bremen 253:140

    Google Scholar 

  • Kramer SL (1996) Geotechnical eartqhuake engineering. Prentice Hall, New Jersey

    Google Scholar 

  • Kreiter S, Moerz T, Strasser M, Lange M, Schunn W, Schlue BF, Otto D, Kopf A (2010) Advanced dynamic soil testing—introducing the new marum dynamic triaxial testing device. In: Mosher DC, Shipp C, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Springer, Dordrecht, Heidelberg, London, New York, pp 31–42

    Google Scholar 

  • Krumbein WC, Sloss LL (eds) (1963) Stratigraphy and sedimentation. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Kutterolf S, Freundt A, Perez W, Mörz T, Schacht U, Wehrmann H, Schmincke HU (2008) Pacific offshore record of plinian arc volcanism in Central America: 1. Along‐arc correlations. Geochemistry, Geophysics, Geosystems 9

  • Loizeau J-L, Arbouille D, Santiago S, Vernet J-P (1994) Evaluation of a wide range laser diffraction grain-size analyser for use with sediments. Sedimentology 41:353–361

    Article  Google Scholar 

  • Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75:368–378. doi:10.1785/gssrl.75.3.368

    Article  Google Scholar 

  • Mair K, Frye KM, Marone C (2002) Influence of grain characteristics on the friction of granular shear zones. J Geophys Res 107:ECV 4-1–ECV 4–9. doi:10.1029/2001JB000516

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc A Math Phys Eng Sci 364:2009–2039

    Article  Google Scholar 

  • Moernaut J, Daele MV, Heirman K, Fontijn K, Strasser M, Pino M, Urrutia R, De Batist M (2014) Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. J Geophys Res:Solid Earth 119:1607–1633

    Article  Google Scholar 

  • Mohamad R, Dobry R (1986) Undrained monotonic and cyclic triaxial strength of sand. J Geotech Eng 112:941–958. doi:10.1061/(ASCE)0733-9410(1986)112:10(941)

    Article  Google Scholar 

  • Muñoz P, Lange C, Gutiérrez D, Hebbeln D, Salamanca M, Dezileau L, Reyss J, Benninger L (2004) Recent sedimentation and mass accumulation rates based on 210 Pb along the Peru–Chile continental margin. Deep-Sea Res II Top Stud Oceanogr 51:2523–2541

    Article  Google Scholar 

  • Orense R, Pender M (2013) Liquefaction characteristics of crushable pumice sand. In:Proceeding of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, pp 2–6

  • Orense RP, Pender MJ, O’Sullivan AS (2012) Liquefaction characteristics of pumice sands. Earthquake Commission, Wellington

    Google Scholar 

  • Pender MJ, Wesley LD, Larkin TJ, Pranjoto S (2006) Geotechnical properties of pumice sand. Soil and Found 46:69–81

    Article  Google Scholar 

  • Poulos S, Castro G, France J (1985) Liquefaction evaluation procedure. J Geotech Eng 111:772–792. doi:10.1061/(ASCE)0733-9410(1985)111:6(772)

    Article  Google Scholar 

  • Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res 108. doi:10.1029/2001JB000818

  • Sadrekarimi A, Olson SM (2011) Critical state friction angle of sands. Geotechnique 61:771–783

    Article  Google Scholar 

  • Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, Setiawan H, Takara K, Nagai O, Yamashiki Y, Tutumi S (2012) A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan—based on the undrained dynamic-loading ring shear tests and computer simulation. Landslides 9:439–455. doi:10.1007/s10346-012-0356-2

    Article  Google Scholar 

  • Schellart WP (2000) Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics 324:1–16. doi:10.1016/S0040-1951(00)00111-6

    Article  Google Scholar 

  • Singh S (1996) Liquefaction characteristics of silts. Geotech Geol Eng 14:19

    Google Scholar 

  • Skempton AW (1954) The pore pressure coefficients A and B. Geotech 4:143–147

    Article  Google Scholar 

  • Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi J (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321

    Article  Google Scholar 

  • Syvitski JPM, Asprey KW, Clattenburg DA (1991) Principles, design and calibration of settling tubes. In: Syvitski JPM (ed) Principles. Methods and Application of Particle Size Analysis. Cambridge University Press, New York, pp 45–63

    Google Scholar 

  • Tokimatsu BK, A. M. ASCE, Seed HB, Hon. M. ASCE (1987) Evaluation of settlement in sands due to earthquake shaking. J Geotechnical Eng 113

  • Tsomokos A, Georgiannou V (2010) Effect of grain shape and angularity on the undrained response of fine sands. Can Geotech J 47:539–551

    Article  Google Scholar 

  • Vaid Y, Sivathayalan S (2000) Fundamental factors affecting liquefaction susceptibility of sands. Can Geotech J 37:592–606. doi:10.1139/t00-040

    Article  Google Scholar 

  • Vaid Y, Chern J, Tumi H (1985) Confining pressure, grain angularity, and liquefaction. J Geotech Eng 111:1229–1235. doi:10.1061/(ASCE)0733-9410(1985)111:10(1229)

    Article  Google Scholar 

  • Vogt C, Lauterjung J, Fischer RX (2002) Investigation of the clay fraction (<2µm) of the clay minerals society reference clays. Clay Clay Miner 50:388–400

  • Wiemer G, Kopf A (2015) Altered marine tephra deposits as potential slope failure planes? Geo-Mar Lett 35:305–314. doi:10.1007/s00367-015-0408-4

    Article  Google Scholar 

  • Wiemer G, Moernaut J, Stark N, Kempf P, De Batist M, Pino M, Urrutia R, de Guevara B, Strasser M, Kopf A (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci 104:1439–1457. doi:10.1007/s00531-015-1144-8

    Article  Google Scholar 

  • Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge university press, Cambridge

    Google Scholar 

  • Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Richardo D, Liam Finn WD, Harder LF Jr, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH II (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron 127:817–833

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tobias Mörz and Stefan Kreiter for providing customized triaxial cells funded by IWES Fraunhofer as well as valuable discussion. Matthias Lange† is thanked for technical assistance with the static and dynamic shear apparatuses at MARUM Marine Geotechnics laboratory. We are grateful to Deutsche Forschungsgemeinschaft (Bonn, Germany) for funding MARUM-Center for Marine Environmental Sciences. Vulkatec GmbH is gratefully thanked for providing various pumice sands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wiemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiemer, G., Kopf, A. On the role of volcanic ash deposits as preferential submarine slope failure planes. Landslides 14, 223–232 (2017). https://doi.org/10.1007/s10346-016-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0706-6

Keywords

Navigation