Skip to main content
Log in

Effects of bedrock anisotropy on hillslope failure in the Darjeeling-Sikkim Himalaya: an insight from physical and numerical models

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This study investigates the role of bed-material anisotropy in triggering landslides in metamorphic terrains of the Darjeeling-Sikkim Himalaya. The initial disposition of foliation (planar anisotropy) with respect to the hillslopes is found to be a crucial parameter in controlling the scale of landslides. Hillslopes with foliation dipping into the surface slope are mostly affected by deeper-seated larger-scale landslides, as compared with those occurring on hills with down slope-dipping foliations. To verify our field observations, we performed scaled slope–failure experiments in a tilted sandbox, simulating the foliation anisotropy in analogue models. Sand–mica beds with the anisotropy planes dipping into the surface slope developed shear localisation along deep-penetrating listric zones, leading to slope failure in the form of down-sliding blocks of large dimensions. In contrast, models with anisotropic planes dipping down slope produced failure zones restricted to the shallow level. The narrow failure zones in the latter case had little tendency to grow in depth but propagated up the hillslope direction. Using Drucker–Prager’s failure criterion, we also ran experiments with finite element models to substantiate the contrasting effects of bed anisotropy on hillslope failure processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acharyya SK (1980) Structural framework and tectonic evolution of the eastern Himalaya. Himal Geol 10:412–439

    Google Scholar 

  • Acharyya SK (2007) Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas—a review. J Asian Earth Sci 31:1–17

    Article  Google Scholar 

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102

    Article  Google Scholar 

  • Alfaro P, Delgado J, García-Tortosa FJ, Lenti L, López JA, López-Casado C, Martino S (2012) Widespread landslides induced by the Mw 5.1 earthquake of 11 May 2011 in Lorca, SE Spain. Eng Geol 137–138:40–52

    Article  Google Scholar 

  • Amadei B (1996) Importance of anisotropy when estimating and measuring in situ stresses in rock. Int J Rock Mech Min Sci Geomech Abstr 33(3):293–325

    Article  Google Scholar 

  • ANSYS® Academic research, 2007. Release 11.0. ANSYS, Inc

  • Avanzi GD, Giannecchini R, Puccinelli A (2004) The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy). Eng Geol 73:215–228

    Article  Google Scholar 

  • Bayly MB (1970) Viscosity and anisotropy estimates from measurements on chevron folds. Tectonophysics 9:459

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Bhasin R, Grimstad E, Larsen JO, Dhawan AK, Singh R, Verma SK, Venkatachalam K (2002) Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Eng Geol 64:351–368

    Article  Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformation. John Wiley, New York

    Google Scholar 

  • Bishop AW (1955) The use of the slip circle in the stability analysis of earth slopes. Geophys J Roy Astron Soc 5(1):7–17

    Google Scholar 

  • Bolton MD (1986) The strength and dilatancy of sands. Geophys J Roy Astron Soc 36(1):65–78

    Google Scholar 

  • Burchfiel BC, Chen Z, Hodges KV, Liu Y, Royden LH, Deng C, Xu J (1992) The South Tibet detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc America Special Paper 269:1–41

    Article  Google Scholar 

  • Chakraborty T, Salgado R (2010) Dilatancy and shear strength of sand at low confining pressures. J Geotech Geoenviron Eng 136(3):527–532

    Article  Google Scholar 

  • Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan. J Geophys Res 114, F03003. doi:10.1029/2008JF001075

    Google Scholar 

  • Chen CY, Martin GR (2002) Soil–structure interaction for landslide stabilizing piles. Comput Geotech 29(5):363–386

    Article  Google Scholar 

  • Cobbold PR, Jackson MPA (1992) Gum rosin (colophony): a suitable material for thermomechanical modelling of lithosphere. Tectonophysics 210:255–271

    Article  Google Scholar 

  • Cowin SC (1974) Constitutive relations that imply a generalized Mohr-Coulomb criterion. Acta Mechanica 20(1–2):41–46

    Article  Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35:131–145

    Article  Google Scholar 

  • Crosta GB, Frattini P (2008) Rainfall-induced landslides and debris flow. Hydrological Processes 22:473–477

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3:523–538

    Article  Google Scholar 

  • Dasgupta S, Ganguly J, Neogi S (2004) Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P–T gradient and implications. J Metamorph Geol 22:395–412

    Article  Google Scholar 

  • Davy P, Cobbold PR (1988) Indentation tectonics in nature and experiment. I: Experiments scaled for gravity. Bull Geol Inst Univ Ups 14:129–141

    Google Scholar 

  • Desrues J, Lanier J, Stutz P (1985) Localization of the deformation in tests on sand sample. Eng Fract Mech 21(4):909–921

    Article  Google Scholar 

  • Dewers T, Ortoleva P (1990) Geochemical self-organization III: a mechanochemical model of metamorphic differentiation. Am J Sci 290:473–521

    Article  Google Scholar 

  • Du Bernard X, Eichhubl P, Aydin A (2002) Dilation bands: a new form of localized failure in granular media. Geophys Res Lett 29(24):2176

    Article  Google Scholar 

  • Dunnicliff J (1988) Geotechnical Instrumentation for monitoring field performance. Wiley, New York

    Google Scholar 

  • Dunning SA, Massey CI, Rosser NJ (2009) Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geophys J Roy Astron Soc 103(1):17–29

    Google Scholar 

  • Eisenstadt G, Sims D (2005) Evaluating sand and clay models: do rheological differences matter? J Struct Geol 27(8):1399–1412

    Article  Google Scholar 

  • Ganseer A (1964) The geology of the Himalayas. Wiley Interscience, New York

    Google Scholar 

  • Ghosh S, vanWesten CJ, Carranza EJM, Jetten VG, Cardinali M, Rossi M, Guzzetti F (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Eng Geol 128:49–62

    Article  Google Scholar 

  • Greco R, Giorgio M, Capparelli G, Versace P (2013) Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol 153:68–79

    Article  Google Scholar 

  • Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Geophys J Roy Astron Soc 49(3):387–403

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geol 24:531–555

    Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122(1–2):9–21

    Article  Google Scholar 

  • Ho J-Y, Lee KT, Chang T-C, Wang Z-Y, Liao Y-H (2012) Influences of spatial distribution of soil thickness on shallow landslide prediction. Eng Geol 124:38–46

    Article  Google Scholar 

  • Hoek, E., Bray, J., 1981. Rock slope engineering. London, pp. 1–345

  • Horsfield WT (1977) An experimental approach to basement-controlled faulting. Geologie en Mijnbouw 56:363–370

    Google Scholar 

  • Hubbert MK (1937) Theory of scale models as applied to the study of geologic structures. Bull Geol Soc Am 48:1459–1520

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM (2005) Regulation of landslide motion by dilatancy and pore pressure feedback. J Geophys Res 110, F02015. doi:10.1029/2004JF000268

    Google Scholar 

  • Jibson RW, Prentice CS, Borissoff BA, Rogozhin EA, Langer CL (1994) Some observations of landslides triggered by the 29 April 1991 Racha earthquake, Republic of Georgia. Bull Seismol Soc Am 84:964–973

    Google Scholar 

  • Juanico, D. E., Longjas, A., Batac, R., Monterola, C., 2008. Avalanche statistics of driven granular slides in a miniature mound. Geophysical Research Letters 35, L19403

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Katz O, Aharonov E (2006) Landslides in vibrating sand box: what controls types of slope failure and frequency magnitude relations? Earth Planet Sci Lett 247:280–294

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Bull Geol Soc Am 95:406–421

    Article  Google Scholar 

  • Keefer DK, Wilson RC, Mark RK, Brabb EE, Brown WM III, Ellen SD, Harp EL, Wieczorek GF, Alger CS, Zatkin RS (1987) Real-time landslide warning during heavy rainfall. Science 238:921–925

    Article  Google Scholar 

  • Kocher T, Schmalholz SM, Mancktelow NS (2006) Impact of mechanical anisotropy and power-law rheology on single layer folding. Tectonophysics 421:71–87

    Article  Google Scholar 

  • Krantz W (1991) Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. Tectonophysics 188:203–207

    Article  Google Scholar 

  • Lan LB, Hudleston P (1996) Rock rheology and sharpness of folds in single layers. J Struct Geol 18:925–931

    Article  Google Scholar 

  • Lee S, Chwae U, Min K (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geophys J Roy Astron Soc 46:149–162

    Google Scholar 

  • Lenti L, Martino S (2012) The interaction of seismic waves with step-like slopes and its influence on landslide movements. Eng Geol 126:19–36

    Article  Google Scholar 

  • Mandal N, Chakraborty C, Samanta SK (2000) An analysis of anisotropy of rocks containing shape fabrics of rigid inclusions. J Struct Geol 22:831–839

    Article  Google Scholar 

  • Mandl G, de Jong LNJ, Maltha A (1977) Shear zones in granular material: an experimental study of their structure and mechanical genesis. Rock Mech Rock Eng 9(2–3):95–144

    Article  Google Scholar 

  • Margielewski W (2006) Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geophys J Roy Astron Soc 77(1–2):47–68

    Google Scholar 

  • Martel SJ (2004) Mechanics of landslide initiation as a shear fracture phenomenon. Mar Geol 203:319–339

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9:485–495

    Article  Google Scholar 

  • Massoudi M, Mehrabadi MM (2001) A continuum model for granular materials: considering dilatancy and the Mohr–Coulomb criterion. Acta Mechanica 152:121–138

    Article  Google Scholar 

  • Misra S, Burg J-P (2012) Mechanics of kink-bands during torsion deformation of muscovite aggregate. Tectonophysics 548–549:22–33

  • Misra S, Mandal N, Chakraborty C (2009) Formation of Riedel shear fractures in granular materials: findings from analogue shear experiments and theoretical analyses. Tectonophysics 471:153–259

    Article  Google Scholar 

  • Oda M, Kazama H (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geophys J Roy Astron Soc 48(4):465–481

    Google Scholar 

  • Peck RB, Deere DH (1960) Investigation of landslides for planning remedial measures. Proc AREA 61:670–677

    Google Scholar 

  • Pietruszczak S, Lydzba D, Shao JF (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39:637–648

    Article  Google Scholar 

  • Rajagopai KR, Massoudi M (1990) A method for measuring the material moduli of granular materials: flow in an orthogonal rheometer. NASA STI/Recon Technical Report N 90:20339

    Google Scholar 

  • Ramsay JG, Lisle R (2000) The techniques of modern structural geology. Applications of continuum mechanics in structural geology, vol 3. Academic Press, London

    Google Scholar 

  • Regueiro RA, Borja RI (1999) A finite element model of localized deformation in frictional materials taking a strong discontinuity approach. Finite Elem Anal Des 33:283–315

    Article  Google Scholar 

  • Richard P, Krantz W (1991) Experiments on fault reactivation in strike–slip mode. Tectonophysics 188:117–131

    Article  Google Scholar 

  • Rowe PW (1962) The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc Lond 269A:500–527

    Article  Google Scholar 

  • Roy S, Mandal N (2009) Modes of hill-slope failure under overburden loads: insights from physical and numerical models. Tectonophysics 473:324–340

    Article  Google Scholar 

  • Simoni A, Houlsby GT (2006) The direct shear strength and dilatancy of sand–gravel mixtures. Geotech Geol Eng 24(3):523–549

    Article  Google Scholar 

  • Sorbino G, Nicotera MV (2013) Unsaturated soil mechanics in rainfall-induced flow landslides. Eng Geol 165:105–132

    Article  Google Scholar 

  • Takahashi, T., 1991. Debris flows. Int. Assn. for Hydr. Res. Monogr. Ser., Balkema Publishers, Brookfield, Vt., USA

  • Wang M, Kulatilake PHSW, Um J, Narvaiz J (2002) Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling. Int J Rock Mech Min Sci 39:887–904

    Article  Google Scholar 

  • Wang C, Tannant DD, Lilly PA (2003) Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int J Rock Mech Min Sci 40:415–424

    Article  Google Scholar 

  • Wang J-J, Zhao D, Liang Y, Wen H-B (2013) Angle of repose of landslide debris deposits induced by 2008 Sichuan earthquake. Eng Geol 156:103–110

    Article  Google Scholar 

  • Weijermars R (1992) Progressive deformation in anisotropic rocks. J Struct Geol 14(6):723–742

    Article  Google Scholar 

  • Weng M-C, Wu M-H, Ning S-K, Jou Y-W (2011) Evaluating triggering and causative factors oflandslide in Lawnon River Basin, Taiwan. Eng Geol 123:72–82

    Article  Google Scholar 

  • Yamada Y, Yamashita Y, Yamamoto Y (2010) Submarine landslides at subduction margins: insights from physical models. Tectonophysics 484:156–167

    Article  Google Scholar 

  • Zabuski L, Thiel K, Bober L (1999) Landslides in the Polish Carpathians Flysch. Geology, modelling, stability calculations. IBW PAN, Gdańsk, 1–171

  • Zheng H, Liu DF, Li CG (2005) Slope stability analysis based on elastoplastic finite element method. Int J Numer Methods Eng 64:1871–1888

    Article  Google Scholar 

  • Zhou CH, Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geophys J Roy Astron Soc 43(3–4):197–207

    Google Scholar 

  • Zhou YX, Zhao J, Song HW, Chew KS (2004) Construction and in-situ monitoring of large-span rock caverns under favourable stress conditions. Int J Rock Mech Min Sci 41(3):541

    Article  Google Scholar 

Download references

Acknowledgements

CSIR, India, is gratefully acknowledged for providing a research fellowship to SR. AB thanks DST, India, for awarding the INSPIRE AORC fellowship. A part of this study has been supported by the SERB project, and J. C. Bose Fellowship of DST, India, awarded to NM. SM acknowledges an SDF grant from GNS Science. The manuscript benefited from critical comments by Mauri and Eileen McSavney. We thank the two anonymous reviewers and the Editor for their insightful, thought-provoking and thorough reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Baruah, A., Misra, S. et al. Effects of bedrock anisotropy on hillslope failure in the Darjeeling-Sikkim Himalaya: an insight from physical and numerical models. Landslides 12, 927–941 (2015). https://doi.org/10.1007/s10346-014-0513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0513-x

Keywords

Navigation