Skip to main content

Advertisement

Log in

Silvicultural strategies for increased timber harvesting in a Central European mountain landscape

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The demand for wood as construction material, renewable source for energy and feedstock for chemicals is expected to increase. However, timber increments are currently only partly harvested in many European mountain regions, which may lead to supply shortages for local timber industries, decreases in forest resistance to disturbances and functioning as protection from gravitational hazards. Using an inventory-based forest simulator, we evaluated scenarios to increase wood mobilization in the 7105-km2 Swiss canton of Grisons for the period 2007–2106. Scenarios varied with respect to landscape-scale harvesting amounts and silvicultural strategies (low vs. high stand-scale treatment intensity) and accounted for regulations and incentives for protection forest management. With 50 and 100% increases of harvests, the current average growing stock of 319 m3 ha−1 was simulated to be reduced by 12 and 33%, respectively, until 2106 in protection forests of Northern Grisons, where management is prioritized due to subsidies. Outside protection forests and in Southern Grisons, growing stock was simulated to continually increase, which led to divergent developments in forest structure in- and outside protection forests and in the Northern and Southern Grisons. The effect of silvicultural strategies on simulated forest structure was small compared to the effect of future harvesting levels. We discuss opportunities and threats of decreasing management activities outside protection forests and advocate for incentives to promote natural regeneration also outside protection forests to safeguard long-term forest stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abegg M, Brändli U-B, Cioldi F (2014) Fourth national forest inventory—result tables and maps on the Internet for the NFI 2009–2013 (NFI4b). www.lfi.ch 28 Oct 2015

  • Baier R, Meyer J, Göttlein A (2005) Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. Eur J For Res 126:11–22. doi:10.1007/s10342-005-0091-5

    Article  Google Scholar 

  • Barreiro S, Schelhaas M-J, Kändler G et al (2016) Overview of methods and tools for evaluating future woody biomass availability in European countries. Ann For Sci. doi:10.1007/s13595-016-0564-3

    Google Scholar 

  • Bebi P, Kulakowski D, Rixen C (2009) Snow avalanche disturbances in forest ecosystems—state of research and implications for management. For Ecol Manag 257:1883–1892. doi:10.1016/j.foreco.2009.01.050

    Article  Google Scholar 

  • Bigler C, Braker OU, Bugmann H et al (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi:10.1007/s10021-005-0126-2

    Article  Google Scholar 

  • Bigot C, Dorren LKA, Berger F (2008) Quantifying the protective function of a forest against rockfall for past, present and future scenarios using two modelling approaches. Nat Hazards 49:99–111. doi:10.1007/s11069-008-9280-0

    Article  Google Scholar 

  • Brändli U-B (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt, BAFU, Birmensdorf, Bern

  • Brang P, Schönenberger W, Bachofen H et al (2004) Schutzwalddynamik unter Störungen und Eingriffen: Auf dem Weg zu einer systemischen Sicht. Eidg Forschungsanstalt WSL Forum Für Wissen 55–66

  • Brang P, Schönenberger W, Frehner M et al (2006) Management of protection forests in the European Alps: an overview. For Snow Landsc Res 80:23–44

    Google Scholar 

  • Brauner M, Weinmeister W, Agner P et al (2005) Forest management decision support for evaluating forest protection effects against rockfall. For Ecol Manag 207:75–85. doi:10.1016/j.foreco.2004.10.018

    Article  Google Scholar 

  • Brůna J, Wild J, Svoboda M et al (2013) Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. For Ecol Manag 305:294–306. doi:10.1016/j.foreco.2013.06.017

    Article  Google Scholar 

  • Bürgi P, Pauli B (2013) Ansätze zur Senkung der Holzerntekosten in der Schweiz. Schweiz Z Forstwes 164:148–157. doi:10.3188/szf.2013.0148

    Article  Google Scholar 

  • Bürgi P, Pauli B, Peter L et al (2010) Rundholzmarkt Graubünden. Handlungsempfehlungen zur Erhöhung des Angebots von sägefähigem Rundholz im Kanton Graubünden. 227

  • Burschel P, Huss J (1997) Grundriss des Waldbaus: ein Leitfaden für Studium und Praxis, 2nd ed. Parey

  • Camin P, Cioldi F, Röösli B (2015) Growing stock. Forest report 2015 condition and use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 32–33

  • Castagneri D, Vacchiano G, Lingua E, Motta R (2008) Analysis of intraspecific competition in two subalpine Norway spruce (Picea abies (L.) Karst.) stands in Paneveggio (Trento, Italy). For Ecol Manag 255:651–659. doi:10.1016/j.foreco.2007.09.041

    Article  Google Scholar 

  • Cordonnier T, Courbaud B, Berger F, Franc A (2008) Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: a simulation study. For Ecol Manag 256:347–354. doi:10.1016/j.foreco.2008.04.028

    Article  Google Scholar 

  • DeRose RJ, Long JN (2014) Resistance and resilience: a conceptual framework for silviculture. For Sci 60:1205–1212

    Google Scholar 

  • Didion M, Kupferschmid AD, Bugmann H (2009) Long-term effects of ungulate browsing on forest composition and structure. For Ecol Manag 258:S44–S55

    Article  Google Scholar 

  • Didion M, Kupferschmid A, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate change on mountain forests. Clim Change 109:647–669. doi:10.1007/s10584-011-0054-4

    Article  Google Scholar 

  • Dodoo A, Gustavsson L, Sathre R (2012) Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building. Appl Energy 92:462–472. doi:10.1016/j.apenergy.2011.11.017

    Article  Google Scholar 

  • Dorren LKA, Berger F, le Hir C et al (2005) Mechanisms, effects and management implications of rockfall in forests. For Ecol Manag 215:183–195. doi:10.1016/j.foreco.2005.05.012

    Article  Google Scholar 

  • Dorren L, Berger F, Frehner M et al (2015) Das neue NaiS-Anforderungsprofil Steinschlag. Schweiz Z Forstwes 166:16–23. doi:10.3188/szf.2015.0016

    Article  Google Scholar 

  • Eastaugh CS, Hasenauer H (2014) Deriving forest fire ignition risk with biogeochemical process modelling. Environ Model Softw 55:132–142. doi:10.1016/j.envsoft.2014.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Erni V, Frutig F (2005) Vorkalkulation in der voll mechanisierten Holzernte. Wald Holz 1:55–57

    Google Scholar 

  • Etzold S, Waldner P, Thimonier A et al (2014) Tree growth in Swiss forests between 1995 and 2010 in relation to climate and stand conditions: Recent disturbances matter. For Ecol Manag 311:41–55. doi:10.1016/j.foreco.2013.05.040

    Article  Google Scholar 

  • Federal Office for the Environment (2013) Waldpolitik 2020. Visionen, Ziele und Massnahmen für eine nachhaltige Bewirtschaftung des Schweizer Waldes. Bundesamt für Umwelt, Bern

  • Ferranti F (2014) Energy wood: a challenge for European forests. Potentials, environmental implications, policy integration and related conflicts. EFI technical report 95, European Forest Institute

  • Fischer C, Camin P (2015) Timber use and increment. Forest report 2015 condition and use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 60–61

  • Foglar-Deinhardstein A, Piribauer V-C, Prem J (2015) Nachhaltige Waldwirtschaft in Österreich. Österreichischer Waldbericht 2015. Republik Österreich, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien

  • Forest Europe, UNECE, FAO (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe. In: Ministerial conference on the protection of forests in Europe, Oslo

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfuntion. Bundesamt für Umwelt, Wald und Landschaft (BUWAL)

  • Frutig F, Holm S, Lemm R et al (2015) Kalkulation von Holzerntearbeiten: Das Produktivitätsmodell HeProMo. www.waldwissen.net

  • Hofer P, Altwegg J, Hässig J et al (2011) Holznutzungspotentiale im Schweizer Wald. Auswertung der Nutzungsszenarien und Waldwachstumsentwicklung. 80

  • Kapeller S, Lexer MJ, Geburek T et al (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. For Ecol Manag 271:46–57. doi:10.1016/j.foreco.2012.01.039

    Article  Google Scholar 

  • Kaufmann E (2001a) Prognosis and management scenarios. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 197–206

    Google Scholar 

  • Kaufmann E (2001b) Estimation of standing timber, growth and cut. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 162–197

    Google Scholar 

  • Kaufmann E (2011) Nachhaltiges Holzproduktionspotenzial im Schweizer Wald. Schweiz Z Forstwes 162:300–311. doi:10.3188/szf.2011.0300

    Article  Google Scholar 

  • Kautz M, Dworschak K, Gruppe A, Schopf R (2011) Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. For Ecol Manag 262:598–608. doi:10.1016/j.foreco.2011.04.023

    Article  Google Scholar 

  • Kläy M (2015) Economic situation of forest enterprises. Forest report 2015 condition and use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 106–107

  • Köhl M (2001) Inventory concept NFI2. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 19–46

    Google Scholar 

  • Kraft U (2015) Wood end use. Forest report 2015 condition use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 114–115

  • Krumm F, Kulakowski D, Risch A et al (2012) Stem exclusion and mortality in unmanaged subalpine forests of the Swiss Alps. Eur J For Res 131:1571–1583. doi:10.1007/s10342-012-0625-6

    Article  Google Scholar 

  • Kupferschmid AD, Bugmann H (2005) Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecol 179:247–268. doi:10.1007/s11258-005-0903-1

    Article  Google Scholar 

  • Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039. doi:10.1016/j.ecolind.2011.02.004

    Article  Google Scholar 

  • Lauri P, Kallio AMI, Schneider UA (2012) Price of CO2 emissions and use of wood in Europe. For Policy Econ 15:123–131. doi:10.1016/j.forpol.2011.10.003

    Article  Google Scholar 

  • Lévesque M, Saurer M, Siegwolf R et al (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19:3184–3199. doi:10.1111/gcb.12268

    Article  Google Scholar 

  • Maroschek M, Rammer W, Lexer MJ (2014) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Change 15:1543–1555. doi:10.1007/s10113-014-0691-z

    Article  Google Scholar 

  • Nabuurs G-J, Delacote P, Ellison D et al (2015) A new role for forests and the forest sector in the EU post-2020 climate targets. From Science to Policy 2. European Forest Institute

  • Økland B, Nikolov C, Krokene P, Vakula J (2016) Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. For Ecol Manag 363:63–73. doi:10.1016/j.foreco.2015.12.007

    Article  Google Scholar 

  • Pasztor F, Matulla C, Rammer W, Lexer MJ (2014) Drivers of the bark beetle disturbance regime in Alpine forests in Austria. For Ecol Manag 318:349–358. doi:10.1016/j.foreco.2014.01.044

    Article  Google Scholar 

  • Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Verlag P. Haupt, Bern

  • Pretzsch H, Grote R, Reineking B et al (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087. doi:10.1093/aob/mcm246

    Article  CAS  PubMed  Google Scholar 

  • Primicia I, Camarero JJ, Janda P et al (2015) Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manag 354:77–86. doi:10.1016/j.foreco.2015.06.034

    Article  Google Scholar 

  • Rammer W, Brauner M, Ruprecht H, Lexer MJ (2015) Evaluating the effects of forest management on rockfall protection and timber production at slope scale. Scand J For Res 30:719–731. doi:10.1080/02827581.2015.1046911

    Article  Google Scholar 

  • Rasche L, Fahse L, Bugmann H (2013) Key factors affecting the future provision of tree-based forest ecosystem goods and services. Clim Change 118:579–593. doi:10.1007/s10584-012-0664-5

    Article  Google Scholar 

  • Reyer C, Lasch-Born P, Suckow F et al (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci 71:211–225. doi:10.1007/s13595-013-0306-8

    Article  Google Scholar 

  • Reyer CPO, Bathgate S, Blennow K et al (2017) Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ Res Lett 12:034027. doi:10.1088/1748-9326/aa5ef1

    Article  Google Scholar 

  • Rigling A, Frank D, Dobbertin M et al (2014) Jahrringanalysen entlang von Höhengradienten. In: Wohlgemuth T, Rigling A (eds) Kurz- Langfristige Auswirkungen Klimas Auf Wäld. Im Churer Rheintal. WSL Berichte 17, Eidg. Forschungsanstalt WSL, Birmensdorf, pp 20–40

  • Rohner B, Weber P, Thürig E (2016) Bridging tree rings and forest inventories: how climate effects on spruce and beech growth aggregate over time. For Ecol Manag 360:159–169. doi:10.1016/j.foreco.2015.10.022

    Article  Google Scholar 

  • Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362. doi:10.1139/x06-025

    Article  Google Scholar 

  • Schmid U, Bircher N, Bugmann H (2015) Naturnaher und multifunktionaler Waldbau in Zeiten des Klimawandels – eine Fallstudie. Schweiz Z Forstwes 166:314–324. doi:10.3188/szf.2015.0314

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011a) Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res 41:694–706. doi:10.1139/x10-235

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011b) Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim Change 106:225–254. doi:10.1007/s10584-010-9899-1

    Article  Google Scholar 

  • Seidl R, Schelhaas M-J, Lexer MJ (2011c) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2842–2852. doi:10.1111/j.1365-2486.2011.02452.x

    Article  Google Scholar 

  • Selva (2016) Rundholzpreise Graubünden. Bündner Waldwirtschaftsverband. http://www.selva-gr.ch. Accessed 24 Mar 2016

  • Stadelmann G, Bugmann H, Wermelinger B, Bigler C (2014) Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For Ecol Manag 318:167–174. doi:10.1016/j.foreco.2014.01.022

    Article  Google Scholar 

  • Stadelmann G, Temperli C, Conedera M et al (2015) Möglichkeiten zur Holzmobilisierung im Tessiner Kastaniengürtel. Schweiz Z Forstwes 166:291–298. doi:10.3188/szf.2015.0291

    Article  Google Scholar 

  • Stadelmann G, Herold A, Didion M et al (2016) Holzerntepotenzial im Schweizer Wald: simulation von Bewirtschaftungsszenarien. Schweiz Z Forstwes 167:152–161. doi:10.3188/szf.2016.0152

    Article  Google Scholar 

  • Stierlin HR, Zinggeler J (2001) Terrestrial inventory. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 65–87

    Google Scholar 

  • Streit K, Wunder J, Brang P (2009) Slit-shaped gaps are a successful silvicultural technique to promote Picea abies regeneration in mountain forests of the Swiss Alps. For Ecol Manag. doi:10.1016/j.foreco.2008.12.018

    Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013a) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. doi:10.1890/12-1503.1

    Article  Google Scholar 

  • Temperli C, Zell J, Bugmann H, Elkin C (2013b) Sensitivity of ecosystem goods and services projections of a forest landscape model to initialization data. Landsc Ecol 28:1337–1352. doi:10.1007/s10980-013-9882-0

    Article  Google Scholar 

  • Thom D, Rammer W, Seidl R (2017) Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Change Biol 23:269–282. doi:10.1111/gcb.13506

    Article  Google Scholar 

  • Thürig E, Kaufmann E (2010) Increasing carbon sinks through forest management: a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps. Eur J For Res 129:563–572. doi:10.1007/s10342-010-0354-7

    Article  Google Scholar 

  • Thürig E, Kaufmann E, Frisullo R, Bugmann H (2005a) Evaluation of the growth function of an empirical forest scenario model. For Ecol Manag 204:53–68. doi:10.1016/j.foreco.2004.07.070

    Article  Google Scholar 

  • Thürig E, Palosuo T, Bucher J, Kaufmann E (2005b) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For Ecol Manag 210:337–350. doi:10.1016/j.foreco.2005.02.030

    Article  Google Scholar 

  • Traub B, Meile R, Speich S, Rösler E (2017) The data storage and analysis system of the Swiss National Forest Inventory. Comput Electron Agric 132:97–107. doi:10.1016/j.compag.2016.11.016

    Article  Google Scholar 

  • Usbeck T, Wohlgemuth T, Dobbertin M et al (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55. doi:10.1016/j.agrformet.2009.08.010

    Article  Google Scholar 

  • Vanoni M, Bugmann H, Nötzli M, Bigler C (2016) Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecol Evol 6:3555–3570. doi:10.1002/ece3.2146

    Article  Google Scholar 

  • Wastl C, Schunk C, Leuchner M et al (2012) Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agric For Meteorol 162–163:1–13. doi:10.1016/j.agrformet.2012.04.001

    Article  Google Scholar 

  • Wehrli A, Dorren LKA, Berger F et al (2006a) Modelling long-term effects of forest dynamics on the protective effect against rockfall. For Snow Landsc Res 80:57–76

    Google Scholar 

  • Wehrli A, Weisberg PJ, Schönenberger W et al (2006b) Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests. Eur J For Res 126:131–145. doi:10.1007/s10342-006-0142-6

    Article  Google Scholar 

  • Wermelinger B, Schneider Mathis D (2014) Befallsrisiko von Waldföhren durch Borkenkäfer. In: Wohlgemuth T, Rigling A (eds) Kurz- Langfristige Auswirkungen Klimas Auf Wäld. Im Churer Rheintal. WSL Berichte 17, Eidg. Forschungsanstalt WSL, Birmensdorf, pp 49–57

  • Werner F, Taverna R, Hofer P et al (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ Sci Policy 13:72–85. doi:10.1016/j.envsci.2009.10.004

    Article  CAS  Google Scholar 

  • Wilhelm C, Kalberer M, Meier A (2011) Neuer Schutzwald Graubünden 2012. Bündner Wald 1:88–95

    Google Scholar 

Download references

Acknowledgements

We thank Riet Gordon, Office of Forest and Natural Hazards of the Canton of Grisons, for his guidance during the development of management scenarios and critical assessments of simulation results. This research was funded by the Swiss National Science Foundation’s 66th National Research Program (Grant No. 4066-40_136711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Temperli.

Additional information

Communicated by Christian Ammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temperli, C., Stadelmann, G., Thürig, E. et al. Silvicultural strategies for increased timber harvesting in a Central European mountain landscape. Eur J Forest Res 136, 493–509 (2017). https://doi.org/10.1007/s10342-017-1048-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1048-1

Keywords

Navigation