Skip to main content
Log in

A Review of Sooty Blotch and Flyspeck Disease in German Organic Apple Production

Die Regenflecken- und Fliegenschmutz-Krankheit in der deutschen Bio-Apfelproduktion

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Sooty blotch and flyspeck (SBFS) fungi colonise the surface of a range of fruits, especially apple, without penetrating the cuticle. Economic damage results from the exclusion of severely affected fruit batches from being marketed as table apples. A study of SBFS was conducted in 2007–2012 in the two largest German apple production areas, i.e. the Lake Constance and Lower Elbe regions. The absence of this disease complex from orchards under integrated pest management in both regions in all years was explained by the collateral effects of scab and storage-rot sprays with captan and quinone-outside inhibitors (QoI) such as trifloxystrobin. However, SBFS was economically relevant in organically managed orchards, being generally more severe in Southern Germany than in the North. In both regions, Peltaster cerophilus was the most frequently isolated SBFS fungus and was chiefly responsible for crop losses. Cyphellophora sessilis, Microcyclosporella mali and Schizothyrium pomi also contributed to SBFS in some organic orchards, whereas a diversity of additional species was confined to untreated orchards. Evidence was obtained that P. cerophilus overwinters within orchards, fruit mummies being one of presumably several colonised plant organs. Infections of young apple fruits were initiated at any time following the end of flowering, and P. cerophilus was capable of causing several infection cycles per season by means of conidial inoculum. The colonisation of sheets of waxed paper by P. cerophilus indicated that this species does not require fruit leachates for growth. No further expansion of colonies was observed during cold storage; instead, P. cerophilus was gradually displaced by other fungi. Differences in the susceptibility of apple varieties to P. cerophilus were due to fruit ripening, late-maturing cultivars being most heavily colonised, and to surface properties, varieties with a waxy bloom being conspicuously less strongly colonised than others. This fungus was unable to colonise russeted fruit areas. Repeated spray treatments with lime-sulphur and potassium bicarbonate throughout the season were effective and necessary to control SBFS in organic production. This strategy threatens the fungicide-saving potential offered by scab-resistant apple varieties. Cultural measures against SBFS include summer pruning as well as the manual removal of fruit mummies in winter.

Zusammenfassung

Pilzliche Erreger der Regenflecken- und Fliegenschmutzkrankheit (RFFS) besiedeln die Oberfläche verschiedener Früchte, insbesondere Apfel, ohne dabei die Kutikula zu durchdringen. Wirtschaftlicher Schaden entsteht, wenn befallene Chargen von Früchten nicht mehr als Tafeläpfel vermarktet werden können. In den beiden größten deutschen Apfelanbaugebieten (Bodensee und Niederelbe) wurde in den Jahren 2007–2012 eine Studie zu RFFS durchgeführt. Das Nichtauftreten der Krankheit in integriert bewirtschafteten Apfelanlagen ist mit einer Nebenwirkung von Schorf- und Lagerfäulebehandlungen mit Captan und Strobilurinen (QoI) wie Trifloxystrobin erklärbar. Die RFFS-Krankheit trat jedoch in wirtschaftlich relevantem Ausmaß in ökologisch bewirtschafteten Anlagen auf, wobei der Befall in Süddeutschland generell höher war als im Norden. In beiden Regionen war Peltaster cerophilus der am häufigsten nachgewiesene Erreger und hauptverantwortlich für Ertragsausfälle. Cyphellophora sessilis, Microcyclosporella mali und Schizothyrium pomi waren in einzelnen Öko-Anlagen ebenfalls mit dieser Krankheit assoziiert, während weitere Arten nur in unbehandelten Anlagen zu finden waren. Es konnte gezeigt werden, dass P. cerophilus innerhalb der Apfelanlagen unter anderem an Fruchtmumien überwintert. Der Befall junger Früchte erfolgte zu jedem Zeitpunkt ab dem Ende der Blüte, wobei durch Konidienbildung mehrere Infektionszyklen pro Saison möglich waren. Die Besiedlung von Wachspapier durch P. cerophilus zeigte, dass zum Wachstum keine Fruchtausscheidungen benötigt werden. Im Kühllager wurde kein weiteres Wachstum der Regenflecken beobachtet, sondern P. cerophilus wurde langsam durch andere Pilze verdrängt. Unterschiede in der Empfindlichkeit verschiedener Apfelsorten gegenüber P. cerophilus ergaben sich durch den Zeitpunkt ihrer Fruchtreife, wobei später reifende Sorten stärker besiedelt waren, sowie durch Oberflächeneigenschaften, wobei Sorten mit bedufteter Oberfläche auffällig weniger stark befallen waren. Diese Pilzart war zudem nicht in der Lage, berostete Fruchtoberflächen zu besiedeln. Wiederholte Behandlungen mit Schwefelkalk und Kaliumbicarbonat über die gesamte Saison hinweg waren effektiv und nötig, um die RFFS-Krankheit in der ökologischen Produktion zu bekämpfen. Diese Strategie gefährdet das Einsparpotential an Fungiziden, welches durch schorfresistente Apfelsorten ermöglicht wird. Kulturtechnische Maßnahmen gegen die RFFS-Krankheit beinhalten den Sommerschnitt sowie die Entfernung der Fruchtmumien im Winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Amiri A, Bompeix G (2005) Diversity and population dynamics of Penicillium spp. on apples in pre- and postharvest environments: consequences for decay development. Plant Pathol 54:74–81

    Article  Google Scholar 

  • Babadoost M, McManus PS, Helland SN, Gleason ML (2004) Evaluating a wetness-based warning system and reduced-risk fungicides to manage sooty blotch and flyspeck of apple. HortTechnol 14:51–57

    Google Scholar 

  • Batzer JC, Gleason ML, Weldon B, Dixon PM, Nutter FW (2002) Evaluation of postharvest removal of sooty blotch and flyspeck on apples using sodium hypochlorite, hydrogen peroxide with peroxyacetic acid, and soap. Plant Dis 86:1325–1332

    Article  CAS  Google Scholar 

  • Batzer JC, Gleason ML, Harrington TC, Tiffany LH (2005) Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia 97:1268–1286

    Article  PubMed  CAS  Google Scholar 

  • Batzer JC, Rincon SH, Mueller DS, Petersen BJ, Le Corronc F, McManus PS, Dixon PM, Gleason ML (2010) Effect of temperature and nutrient concentration on the growth of six species of sooty blotch and flyspeck fungi. Phytopathol Mediterr 49:3–10

    Google Scholar 

  • Batzer JC, Sisson AJ, Harrington TC, Mayfield DA, Gleason ML (2012) Temporal patterns in appearance of sooty blotch and flyspeck fungi on apples. Microb Ecol 64:928–941

    Article  PubMed  CAS  Google Scholar 

  • Batzer JC, Stensvand A, Mayfield DA, Gleason ML (2015) Composition of the sooty blotch and flyspeck complex on apple in Norway is influenced by location and management practices. Eur J Plant Pathol 141:361–374

    Article  CAS  Google Scholar 

  • Batzer JC, Weber RWS, Mayfield DA, Gleason ML (2016) Diversity of sooty blotch and flyspeck complex on apple in Germany. Mycol Progr 15:2

  • Beer M, Brockamp L, Weber RWS (2015) Control of sooty blotch and black rot of apple through removal of fruit mummies. Folia Hortic 27:43–51

    Article  Google Scholar 

  • Belding RD, Sutton TB, Blankenship SM, Young E (2000) Relationship between apple fruit epicuticular wax and growth of Peltaster fructicola and Leptodontidium elatius, two fungi that cause sooty blotch disease. Plant Dis 84:767–772

    Article  CAS  Google Scholar 

  • Biggs AR, Cooley DR, Rosenberger DA, Yoder KS (2010) Relative susceptibility of selected apple cultivars to sooty blotch and flyspeck. Plant Health Progr. doi:10.1094/PHP-2010-0726-01-RS

    Google Scholar 

  • Brockamp L, Weber RWS (2014) Black rot (Diplodia seriata) in organic apple production—infection biology and disease control strategies. In: Proceedings of the 16th International Conference on Cultivation Techniques and Phytopathological Problems in Organic Fruit Growing. FÖKO, Hohenheim, pp 77–82. http://www.ecofruit.net/2014/11RP_Brockamp_black_rot_p77-82.pdf

  • Brown EM, Sutton TB (1986) Control of sooty blotch and flyspeck of apple with captan, mancozeb, and mancozeb combined with dinocap in dilute and concentrate applications. Plant Dis 70:281–284

    Article  CAS  Google Scholar 

  • Brown EM, Sutton TB (1993) Time of infection of Gloeodes pomigena and Schizothyrium pomi on apple in North Carolina and potential control by an eradicant spray program. Plant Dis 77:451–455

    Article  CAS  Google Scholar 

  • Brown EM, Sutton TB (1995) An empirical model for predicting the first symptoms of sooty blotch and flyspeck of apples. Plant Dis 79:1165–1168

    Article  Google Scholar 

  • Buchleither S, Späth S (2007) Regenflecken—nach wie vor ein ungelöstes Problem. Öko-Obstb 3:3–7

    Google Scholar 

  • Buchleither S, Späth S, Bohr A, Mayr U (2012) Disease development of sooty blotch and its correlation to wetness hours. In: Proceedings of the 15th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. FÖKO, Weinsberg, pp 54–60. http://www.ecofruit.net/2012/proceedings-2012.pdf

  • Cooley DR, Gamble JW, Autio WR (1997) Summer pruning as a method for reducing flyspeck disease on apple fruit. Plant Dis 81:1123–1126

    Article  Google Scholar 

  • Cooley DR, Lerner SM, Tuttle AF (2007) Maturation of thyriothecia of Schizothyrium pomi on the reservoir host Rubus allegheniensis. Plant Dis 91:136–141

    Article  Google Scholar 

  • Cooley DR, Rosenberger DA, Gleason ML, Koehler G, Cox K, Clements JM, Sutton TB, Madeiras A, Hartman JR (2011) Variability among forecast models for the apple sooty blotch/flyspeck disease complex. Plant Dis 95:1179–1186

    Article  Google Scholar 

  • Cross J, Berrie A, Johnson D, Biddlecombe T, Pennell D, Luton M, Ashdown C (2014) Apple Best Practice Guide. Horticultural Development Company, Kenilworth, UK. http://apples.hdc.org.uk

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz Arias MM, Batzer JC, Harrington TC, Wang Wong A, Bost SC, Cooley DR, Ellis MA, Hartman JR, Rosenberger DA, Sundin GW, Sutton TB, Travis JW, Wheeler MJ, Yoder KS, Gleason ML (2010) Diversity and biogeography of sooty blotch and flyspeck fungi on apple in the Eastern and Midwestern United States. Phytopathology 100:345–355

    Article  PubMed  Google Scholar 

  • Feldmann T, Oertel B, Steiner U, Noga G (2003) Untersuchungen zum Vorkommen von Mykotoxinen bei Auftreten der Rußfleckenkrankheit an Apfelfrüchten. University of Bonn, Schriftenreihe des Lehr- u. Forschungsschwerpunktes “Umweltverträgliche und standortgerechte Landwirtschaft” 110. http://www.usl.uni-bonn.de/pdf/Forschungsbericht%20110.pdf

  • Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers H-J (2010) Microcyclospora and Microcyclosporella: novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 24:93–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs JG, Häseli A, Tamm L (2002) Influence of application strategy of coconut soap on the development of sooty blotch on apple. In: Proceedings of the 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. FÖKO, Weinsberg, pp 50–54. http://orgprints.org/145946

  • Gleason ML, Batzer JC, Sun G, Zhang R, Díaz Arias MM, Sutton TB, Crous PW, Ivanović M, McManus PS, Cooley DR, Mayr U, Weber RWS, Yoder KS, Del Ponte EM, Biggs AR, Oertel B (2011) A new view of sooty blotch and flyspeck. Plant Dis 95:368–383

    Article  Google Scholar 

  • Gold HJ, Sutton TB (1988) Past orchard performance as a guide to decisions on use of fungicides to control sooty blotch and flyspeck. Crop Prot 7:258–266

    Article  Google Scholar 

  • Grabowski M, Wrona B (2004) An investigation of the date of sooty blotch primary infection and duration of incubation period for selected apple cultivars. Folia Hortic 16:73–77

    Google Scholar 

  • Hendrix FF (1991) Removal of sooty blotch and flyspeck from apple fruit with a chlorine dip. Plant Dis 75:742–743

    Article  Google Scholar 

  • Ismail SI (2014) Phenology of infection on apple fruit by sooty blotch and flyspeck species in Iowa apple orchards and phylogenetic analysis to assess the evolutionary origins of sooty blotch and flyspeck on apple. PhD dissertation, University of Iowa, USA

  • Ismail SI, Batzer JC, Harrington TC, Gleason ML (2015) Phenology of infection on apple fruit by sooty blotch and flyspeck species in Iowa apple orchards. Plant Dis doi:10.1094/PDIS-02-15-0137-RE

  • Ivanović MM, Ivanović MS, Batzer JC, Tatalović N, Oertel B, Latinović J, Latinović N, Gleason ML (2010) Fungi in the apple sooty blotch and flyspeck complex from Serbia and Montenegro. J Plant Pathol 92:65–72

    Google Scholar 

  • Johnson EM, Sutton TB (2000) Response of two fungi in the apple sooty blotch complex to temperature and relative humidity. Phytopathology 90:362–367

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM, Sutton TB, Hodges CS (1997) Etiology of apple sooty blotch disease in North Carolina. Phytopathology 87:88–95

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen GCM, Holb IJ, Jeger MJ (2002) Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathol 51:787–793

    Article  Google Scholar 

  • Mayfield DA, Karakaya A, Batzer JC, Blaser JM, Gleason ML (2013) Diversity of sooty blotch and flyspeck fungi from apples in northeastern Turkey. Eur J Plant Pathol 135:805–815

    Article  Google Scholar 

  • Mayr U, Späth S (2008) Sooty blotch of apple: efficacy of different application strategies. In: Proceedings of the 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. FÖKO, Weinsberg, pp 82–86. http://orgprints.org/13649

  • Mayr U, Späth S, Buchleither S (2010) Sooty blotch research—a progress report. In: Proceedings of the 14th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. FÖKO, Weinsberg, pp 70–77. http://www.ecofruit.net/2010/9_RP_U_Mayr_S_Spaeth_S_Buchleither_S70bis77.pdf

  • Medjedović A, Frank J, Schroers H-J, Oertel B, Batzer JC (2014) Peltaster cerophilus is a new species of the apple sooty blotch complex from Europe. Mycologia 106:525–536

    Article  PubMed  CAS  Google Scholar 

  • Mirzwa-Mróz E, Wińska-Krysiak M (2011) Diversity of sooty blotch fungi in Poland. Acta Sci Pol—Hortic Cultus 10:191–200

    Google Scholar 

  • Nasu H, Kunoh H (1987) Scanning electron microscopy of flyspeck of apple, pear, Japanese persimmon, plum, Chinese quince, and pawpaw. Plant Dis 71:361–364

    Article  Google Scholar 

  • Palm G, Kruse P (2012) Wie ist in der Zukunft Lagerfäulnis zu verhindern? Mitt d Obstbauversuchsringes d Alten Landes 67:306–311

    Google Scholar 

  • Quast G, Weber RWS (2008) Aktuelles zur Infektionsbiologie von Diplodia seriata an Äpfeln im Niederelbegebiet. Mitt d Obstbauversuchsringes d Alten Landes 63:376–383

    Google Scholar 

  • Rosenberger DA, Meyer FW (2007) Timing summer fungicides to control flyspeck disease on apples. N Y Fruit Quart 15:11–14

    Google Scholar 

  • Rosenberger DA, Engle CA, Meyer FW (1996) Effects of management practices and fungicides on sooty blotch and flyspeck diseases and productivity of Liberty apples. Plant Dis 80:798–803

    Article  Google Scholar 

  • Rosli HB, Gleason ML, Batzer JC (2013) Validation of the Gleason-Duttweiler warning system for sooty blotch and flyspeck management using a modified relative humidity threshold. Iowa State Research Farm Progr Rep 1996. http://lib.dr.iastate.edu/farms_reports/1996

  • Rühmer T (2010) Je nasser der Sommer, desto größer das Problem. Besseres Obst 6:4–7

    Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–31

    Google Scholar 

  • Spolti P, Valdebenito-Sanhueza RM, Gleason ML, Del Ponte EM (2011) Inoculum and infection dynamics of the sooty blotch and flyspeck complex of apples in Southern Brazil. J Plant Pathol 93:497–501

    Google Scholar 

  • Spolti P, Valdebenito-Sanhueza RM, Laranjeira FF, Del Ponte EM (2012) Comparative spatial analysis of the sooty blotch/flyspeck disease complex, bull’s eye and bitter rots of apples. Plant Pathol 61:271–280

    Article  Google Scholar 

  • Stanis VF, Jones AL (1984) Genetics of benomyl resistance in Venturia inaequalis from North and South America, Europe, and New Zealand. Can J Plant Pathol 6:283–290

    Article  CAS  Google Scholar 

  • Surup F, Medjedović A, Szczygielski M, Schroers H-J, Stadler M (2014) Production of trichothecenes by the apple sooty blotch fungus Microcyclospora tardicrescens. J Agric Food Chem 62:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Sutton TB, Williamson SM (2002) Sooty blotch of apple: etiology and management. In: Proceedings of the 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. FÖKO, Weinsberg, pp 43–48. http://orgprints.org/14594

  • Tamm L, Häseli A, Fuchs JG, Weibel FP, Wyss E (2004) Organic fruit production in humid climates of Europe: bottlenecks and new approaches in disease and pest control. Acta Hortic 638:333–339

    Article  Google Scholar 

  • Trapman M, Tamm L, Fuchs JG (2004) The effectiveness of winter treatments with copper or lime sulphur to control sooty blotch on apple. In: Proceedings of the 11th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. FÖKO, Weinsberg, pp 67–72. http://orgprints.org/14075

  • Tribe HT, Thines E, Weber RWS (2006) Moulds that should be better known: the wine cellar mould, Racodium cellare Persoon. Mycologist 20:171–175

    Article  Google Scholar 

  • Venkatasubbaiah P, Sutton TB, Chilton WS (1995) The structure and biological properties of secondary metabolites produced by Peltaster fructicola, a fungus associated with apple sooty blotch disease. Plant Dis 79:1157–1160

    Article  CAS  Google Scholar 

  • Weber RWS (2009) Betrachtung möglicher Auswirkungen des Klimawandels auf Schadpilze im Obstbau am Beispiel von Fruchtfäulereergern an Äpfeln. Erw-Obstb 51:115–120

    Article  Google Scholar 

  • Weber RWS (2011) Phacidiopycnis washingtonensis, cause of a new storage rot of apples in Northern Europe. J Phytopathol 159:682–686

    Article  Google Scholar 

  • Weber RWS (2012) Mikroskopische Methode zum Nachweis pathogener Pilze auf Fruchtmumien von Äpfeln. Erw-Obstb 54:171–176

    Article  Google Scholar 

  • Weber RWS, Kruse P (2015) Die Schorfjahre 2013 und 2014 an der Niederelbe. Mitt d Obstbauversuchsringes d Alten Landes 70:110–123

    Google Scholar 

  • Weber RWS, Palm G (2010) Resistance of storage rot fungi Neofabraea perennans, N. alba, Glomerella acutata and Neonectria galligena against thiophanate-methyl in Northern German apple production. J Plant Dis Prot 117:185–191

    Article  Google Scholar 

  • Williamson SK, Sutton TB (2000) Sooty blotch and flyspeck of apples: biology, etiology, and control. Plant Dis 84:714–724

    Article  Google Scholar 

  • Williamson SM, Hodges CS, Sutton TB (2004) Re-examination of Peltaster fructicola, a member of the apple sooty blotch complex. Mycologia 96:885–890

    Article  PubMed  CAS  Google Scholar 

  • Wrona B, Gleason M (2005) Effect of surface amino acids on the growth of Peltaster fructicola-fungus associated with sooty blotch complex. J Plant Prot Res 45:273–278

    CAS  Google Scholar 

  • Wrona B, Grabowski M (2004) Influence of fructose and glucose occurring on fruit surface on the growth of fungi that cause sooty blotch of apple. J Plant Prot Res 44:287–291

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter Maxin, Margarita Beer, Susan Brauer and Stefanie Kutz (Esteburg-Obstbauzentrum Jork) for technical assistance. Long-term financial support by the German Ministry of Food and Agriculture (Bundesprogramm Ökologischer Landbau, grant numbers 06OE323 and 2810OE004) is gratefully acknowledged and has been essential for conducting the work described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland W. S. Weber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, R., Späth, S., Buchleither, S. et al. A Review of Sooty Blotch and Flyspeck Disease in German Organic Apple Production. Erwerbs-Obstbau 58, 63–79 (2016). https://doi.org/10.1007/s10341-016-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-016-0266-x

Keywords

Schlüsselwörter

Navigation