Skip to main content
Log in

Northern Goshawk (Accipiter gentilis) may improve Black Grouse breeding success

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

An Erratum to this article was published on 02 June 2017

Abstract

Around the nests of many birds of prey the pressure of nest predators is decreased. This attracts other bird species to breed near nests of those birds of prey in order to benefit from protection conferred. This study examines the possible protective effect of the Northern Goshawk (Accipiter gentilis) on two of its main prey species, the Black Grouse (Tetrao tetrix) and the Capercaillie (Tetrao urogallus). If the Goshawk reduces the number of corvids robbing grouse nests, there should be a larger proportion of grouse females with broods near Goshawk nests during late summer. We compared the proportion of grouse females with the broods observed in wildlife-triangle counts, which were performed along a 12-km-long equilateral triangle in relation to distance from a successful Goshawk nest. Where Goshawks had nested inside a triangle, the proportion of Black Grouse females with a brood was 20 % higher than in situations where a Goshawk had nested 2–3 km away from the center of the triangle. On the other hand, the number of adult Black Grouse rose as the distance from the Goshawk nest increased, but this pattern did not hold with chick abundance. No distance effect was found for Capercaillie. This study thus provided indirect evidence based on quantitative data that Goshawks may create a protective effect for one of its main prey.

Zusammenfassung

Die Anwesenheit von Habichten erhöht möglicherweise den Bruterfolg von Birkhühnern

Der Prädationsdruck durch Nesträuber ist in der Nähe von Horsten oftmals geringer. Andere Vogelarten brüten daher gern in der Nähe von Horsten, um vom geringeren Prädationsdruck zu profitieren. Wir untersuchten, ob dieses Phänomen auch auf Birkhühner (Tetrao tetrix) und Auerhühner (Tetrao urogallus) zutrifft, zwei der wichtigsten Beutetiere von Habichten. Unsere Annahme war, dass Habichte einen negativen Einfluss auf Rabenvögel, die die Nester von Birkhühnern plündern haben, und wir somit einen erhöhten Anteil brütender Birkhuhnhennen in der Nähe von Habichthorsten im Spätsommer finden sollten. Wir verglichen daher die Anzahl brütender Birkenhuhnhennen in Bezug zur Entfernung von aktiven Habichthorsten innerhalb eines 12 km gleichseitigen Dreiecks. Der Anteil brütender Hennen war 20 % höher in Gebieten mit zentral gelegenen Habichthorsten als in Gebieten, wo Habichte 2–3 km vom Zentrum unseres Messpunktes entfernt brüteten. Jedoch zeigte sich auch, dass die Anzahl adulter Birkhühner mit der Entfernung zu aktiven Habichthorsten zunahm. Dieses Muster traf jedoch nicht zu, wenn wir die Kükenanzahl berücksichtigten. Ebenso fanden wir keinen Effekt auf Auerhühner. Indirekt haben wir hiermit einen quantitativen Nachweis erbracht, dass Habichte möglicherweise einen schützenden Einfluss auf eines ihrer Hauptbeutetiere haben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrén H (1990) Despotic distribution unequivocal reproductive success and population regulation in the Hay Garrulus glandarius. Ecology 71:1796–1803

    Article  Google Scholar 

  • Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73(3):794–804

    Article  Google Scholar 

  • Angelstam P (1984) Sexual and seasonal differences in mortality of the Black Grouse (Tetrao tetrix) in boreal Sweden. Ornis Scand 123–134

  • Angelstam P (1986) Predation on ground nesting birds’ nests in relation to predator densities and habitat edge. Oikos 47:365–373

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) Lme4: Linear mixed effects models using S4 classes R Package Version 09999990. Available at: http://www.crantrprojectorg

  • Bjornstad ON (2013) ncf: Spatial nonparametric covariance functions R package Version 115. Available at: http://www.cranrprojectorg/

  • Blanco G, Tella JL (1997) Protective association and breeding advantages of choughs nesting in lesser kestrel colonies. Anim Behav 54:335–342

    Article  CAS  PubMed  Google Scholar 

  • Bogliani G, Sergio F, Tavecchia G (1999) Woodpigeons nesting in association with hobby falcons: advantages and choice rules. Anim Behav 57:125–131

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach. Springer Verlag, New York

    Google Scholar 

  • Byholm P, Burgas D, Virtanen T, Valkama J (2012) Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology 93:1802–1808

    Article  PubMed  Google Scholar 

  • Caro MJ, Rogers CM (1998) Song sparrrows, top carnivores and nest predation: a test of the mesopredator release hypothesis. Oecologia 116:227–233

    Article  PubMed  Google Scholar 

  • Elmhagen B, Ludwig G, Rushton SP, Helle P, Lindén H (2011) Top predatprs, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J Anim Ecol 79:785–794

    Google Scholar 

  • Eng RL, Gullion GW (1962) The predation of Goshawks upon Ruffed Grouse on the Cloquet Forest Research Center Minnesota. Wilson Bull 74:227–242

    Google Scholar 

  • Erikstad K, Blom R, Myrberget S (1982) Territorial hooded crows as predators on willow ptarmigan nests. J Wildl Manage 46:109–114

    Article  Google Scholar 

  • Forsman J, Mönkkönen M, Hukkanen M (2001) Effects of predation on community assembly and spatial dispersion of breeding forest birds. Ecology 82:232–244

    Article  Google Scholar 

  • Hadfield J (2012): MCMCglmm: MCMC generalised linear mixed models R Package Version 217. Available at: http://www.cranrprojectorg/

  • Helle P, Helle T, Lindén H (1994) Capercaillie (Tetrao urogallus) Lekking sites in fragmented Finnish forest landscape. Scand J For Res 9(4):386–396

  • Jokimäki J, Huhta E (2000) Artificial nest predation and abundance of birds along an urban gradient. The Condor 102:838–847

    Article  Google Scholar 

  • Kenward RE (2007) The Goshawk. T and AD Poyser, London

    Google Scholar 

  • Korpimäki E, Sulkava S, Huhtala K (1990) Does the year to year variation in the diet of eagle Owl support the alternative prey hypothesis? Oikos 58:47–54

    Article  Google Scholar 

  • Korpimäki E, Norrdahl K, Rinta-Jaskari T (1991) Response of stoats and least weasels to fluctuating food abundances: is the low phase of vole cycle due to mustelid predation? Oecologia 88:552–561

    Article  PubMed  Google Scholar 

  • Lindén H, Wikman M, Helle P (1989) tetraonid populations in Finland in 1988: a comparison between route censuses and wildlife triangles. Suomen Riista 35:36–42 (in Finnish with summary in English)

    Google Scholar 

  • Ludwig GX, Alatalo RV, Helle P, Nissinen K, Siitari H (2007) Large-scale drainage and breeding in boreal forest grouse. J Appl Ecol 45:325–333

    Article  Google Scholar 

  • Luginbuhl JM, Marzluff JM, Bradley JE, Raphael MG, Varland DE (2001) Corvid survey techniques and the relationship between corvid abundance and nest predation. J Field Orn 72:552–572

    Google Scholar 

  • Madden CF, Arroyo B, Amari A (2015) A review of the impacts of corvids on bird productivity and abundance. Ibis 157:1–16

    Article  Google Scholar 

  • Manzer D, Hannon S (2005) Relating grouse nest success and corvid density to habitat: a multiscale approach. J Wildl Manage 69:110–123

    Article  Google Scholar 

  • Marjakangas A (1996) Nest losses in a boreal black grouse population. Suomen Riista 42:25–31 (in Finnish with summary in English)

    Google Scholar 

  • Marjakangas A, Törmälä L (1997) Female age and breeding performance in a cyclic population of black grouse Tetrao tetrix. Wildl Biol 3:195–203

    Google Scholar 

  • Milonoff M (1994) An overlooked connection between goshawk and tetraonids—corvids! Suomen Riista 40:91–97 (in Finnish with summary in English)

    Google Scholar 

  • Møller AP (1987) Copulation behaviour in the goshawk Accipiter gentilis. Anim Behav 35:755–763

    Article  Google Scholar 

  • Mönkkönen M, Husby M, Tornberg R, Helle P, Thomson RL (2007) Predation as a landscape effect: the trade off by prey species between predation risks and protection benefits. J Anim Ecol 76:619–629

    Article  PubMed  Google Scholar 

  • Nilsson SG (1981) The evolution in nest-site selection in hole-nesting birds: The importance of nest predation and competition. Ornis Scand 16:167–175

    Google Scholar 

  • Norrdahl K, Korpimäki E (1998) Fear in farmlands: how much does predator avoidance affect bird community structure? J Avian Biol 29:79–85

    Article  Google Scholar 

  • Norrdahl K, Suhonen J, Hemminki O, Korpimäki E (1995) Predation presence may benefit: Kestrel protect curlew nests against nest predators. Oecologia 101:105–109

    Article  PubMed  Google Scholar 

  • Paine RT, Wootton JT, Boersma PD (1990) Direct and indirect effects of peregrine falcon predation on seabird abundance. Auk 107:1–9

    Article  Google Scholar 

  • Palomares F, Gaona P, Ferreras P, Delibes M (1995) Positive effects on game species of top predators by controlling smaller predator populations: an example with lynx, mongooses and rabbits. Cons Biol 9:295–305

    Article  Google Scholar 

  • Parker H (1984) Effect of corvid removal on reproduction willow ptarmigan and black grouse. J Wildl Manage 48:197–205

    Google Scholar 

  • Penteriani V (2002) Goshawk nesting habitat in Europe and North America; a review. Ornis Fenn 79:149–163

    Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brasharres JS (2009) The rise of mesopredator. Bioscience 59:779–791

    Article  Google Scholar 

  • Quinn J, Ueata M (2008) Protective nesting associations in birds. Ibis 150:146–167

    Article  Google Scholar 

  • Quinn JL, Prop J, Kokorev Y, Black JM (2003) Predator protection or similar habitat selection in red-breasted goose nesting associations: extremes along a continuum. Anim Behav 65:297–307

    Article  Google Scholar 

  • R Core Team (2012): R: A language and environment for statistical computing Version 2151 R Foundation for Statistical Computing Vienna Austria. Available at: http://www.rprojectorg/

  • Reif V, Tornberg R, Jungell S, Korpimäki E (2001) Diet variation of common buzzards in Finland supports the alternative prey hypothesis. Ecography 24:267–274

    Article  Google Scholar 

  • Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:082–998

    Article  Google Scholar 

  • Sergio F, Marchesi L, Pedrini P (2003) Spatial refugia and coexistence of a diurnal raptor with its intraguild owl predator. J Anim Ecol 72:232–245

    Article  Google Scholar 

  • Sergio F, Newton I, Marchesi L (2005) Top predators and biodiversity. Nature 436:1–4

    Article  Google Scholar 

  • Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, Mchugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale assumptions and efficacy. Annu Rev Ecol Evol Syst 39:1–19

    Article  Google Scholar 

  • Swenson JE, Angelstam P (1993) Habitat separation by sympatric forest grouse in Fennoscandia in relation to boreal forest. Can J Zool 71:1303–1310

    Article  Google Scholar 

  • Tornberg R (1997) Prey selection of the goshawk Accipiter gentilis during the breeding season: the role of prey profitability and vulnerability. Ornis Fenn 74:15–28

    Google Scholar 

  • Tornberg R, Colpaert A (2001) Survival ranging habitat choice and diet of the Northern Goshawk Accipiter Gentilis during winter in Northern Finland. Ibis 143:41–50

    Article  Google Scholar 

  • Tornberg R, Korpimäki E, Jungell S, Reif V (2005) Delayed numerical response of goshawks to population fluctuation of forest grouse. Oikos 111:408–415

    Article  Google Scholar 

  • Tornberg R, Korpimäki E, Byholm P (2006) Ecology of northern goshawk in Fennoscandia. Stud Avian Biol 31:141–157

    Google Scholar 

  • Tornberg R, Helle P, Korpimäki E (2011) Vulnerability of black grouse hens to goshawk predation: result of food supply or predation facilitation? Oecologia 166:577–584

    Article  PubMed  Google Scholar 

  • Tornberg R, Reif V, Korpimäki E (2012) What explains forest grouse mortality: predation impacts of raptors vole abundance or weather conditions? Int J Ecol. doi:10.1155/2012/375260

    Google Scholar 

  • Väänänen V-M (2000) Predation risk assocoated with nesting in gull colonies by two Aythya species; observations and an experiment. J Avian Biol 31:31–35

    Article  Google Scholar 

  • Väisänen RA, Lammi E, Koskimies P (1998) Distribution numbers and population changes of Finnish breeding birds (in Finnish with English summary). Otava, Helsinki

    Google Scholar 

  • Wegge P, Storaas T (1990) Nest loss in capercaillie and black grouse in relation to the small rodent cycle in southeast Norway. Oecologia 82:527–530

    Article  CAS  PubMed  Google Scholar 

  • Wiklund CG (1982) Fieldfare (Turdus pilars) breeding success in relation to colony size nest position and association with Merlins (Falco columbarius). Behav Ecol Sociobiol 11:165–172

    Article  Google Scholar 

  • Willebrand T (1988) Demography and ecology of a Black Grouse (Tetrao tetrix l) population. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 148

Download references

Acknowledgments

We thank Ossi Tornberg and Nora Välimäki for proofreading and two anonymous referees for valuable comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risto Tornberg.

Additional information

Communicated by F. Bairlein.

An erratum to this article is available at http://dx.doi.org/10.1007/s10336-017-1463-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tornberg, R., Rytkönen, S., Välimäki, P. et al. Northern Goshawk (Accipiter gentilis) may improve Black Grouse breeding success. J Ornithol 157, 363–370 (2016). https://doi.org/10.1007/s10336-015-1292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1292-4

Keywords

Navigation