Skip to main content
Log in

Intensity of haemosporidian infection of parids positively correlates with proximity to water bodies, but negatively with host survival

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

In birds, haemosporidian parasites have been found to have direct pathogenic effects on the host with important consequences for their fitness. However, less is known about distribution patterns of parasite vectors, which may significantly affect parasite prevalence, infection intensity and, thus, pathogenicity in hosts. Here, we tested for relationships between infection intensity, survival, predation and distance from water bodies of mixed-species tit flocks. We found that the prevalence of Haemoproteus and Plasmodium infections decreased with increasing distance from forest lakes and bogs outside the bird breeding season. Haemoproteus and Plasmodium parasites were found to be associated with a low survival rate of willow tits (Poecile montanus) in the vicinity of water bodies, while crested tits (Lophophanes cristatus) were affected only by Haemoproteus. Crested tits, a dominant species of parid social groups, had a lower parasite prevalence and they survived better than the subordinate willow tit. This can be explained by the crested tits foraging higher in the pine canopy as parasite vectors supposedly cannot reach hosts in the upper canopy as equally as in lower parts of the canopy. We show that individuals staying in flocks further from the forest water bodies and spending more time foraging in the upper parts of the canopy have higher chances of survival into the next breeding season. This suggests that different forest and canopy areas may differ in terms of parasite risk and associated mortality. Finally, we found that the infection status of parids increases the probability of predation by the pygmy owl (Glaucidium passerinum). We conclude that distance from water bodies and foraging location in the forest canopy may affect the intensity of parasite infection with fitness consequences in wintering parids.

Zusammenfassung

Die Intensität von Hämosporidieninfektionen bei Meisen korreliert positiv mit der Nähe zu Gewässern aber negativ mit dem Überleben des Wirts

Bei Vögeln ist gezeigt worden, dass Hämosporidien-Parasiten direkte pathogene Effekte auf den Wirt und wichtige Folgen für seine Fitness haben. Weniger ist jedoch über die Verbreitungsmuster der Parasitenvektoren bekannt, welche die Prävalenz, die Intensität der Infektion und somit die Pathogenität bei Wirten signifikant beeinflussen können. Hier haben wir getestet, ob bei gemischten Meisenschwärmen Zusammenhänge zwischen Infektionsintensität, Überleben, Prädation und Entfernung zu Gewässern bestehen. Wir fanden, dass außerhalb der Brutsaison der Vögel die Prävalenz von Haemoproteus- und Plasmodium-Infektionen mit zunehmender Entfernung von Waldseen und Sümpfen abnahm. Haemoproteus- und Plasmodium-Parasiten waren mit niedrigen Überlebensraten von Weidenmeisen (Poecile montanus) in der Nähe von Gewässern assoziiert, während Haubenmeisen (Lophophanes cristatus) lediglich von Haemoproteus betroffen waren. Haubenmeisen, eine dominante Art in Meisen-Sozialgruppen, hatten geringere Parasiten-Prävalenz und überlebten besser als die rangniedrigeren Weidenmeisen. Dies kann damit erklärt werden, dass die Haubenmeisen weiter oben in den Kronen der Kiefern nach Nahrung suchten und Parasitenvektoren die Wirte weiter oben in der Krone vermutlich nicht so häufig erreichen können wie weiter unten in der Krone. Wir zeigen, dass Individuen, die sich in Schwärmen weiter entfernt von Waldgewässern aufhalten und mehr Zeit damit verbringen, weiter oben in der Krone nach Nahrung zu suchen, höhere Chancen haben, bis zur nächsten Brutsaison zu überleben. Dies deutet darauf hin, dass sich verschiedene Wald- und Kronenbereiche in Bezug auf das Parasitenrisiko und die damit verbundene Sterblichkeit unterscheiden. Schließlich fanden wir, dass der Infektionsstatus von Meisen die Wahrscheinlichkeit von Prädation durch den Sperlingskauz (Glaucidium passerinum) erhöht. Wir folgern, dass die Entfernung zu Gewässern und der Ort der Nahrungssuche in den Baumkronen die Intensität von Parasiteninfektionen bei überwinternden Meisen beeinflusst, was Folgen für ihre Fitness hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allander K, Bennett GF (1994) Prevalence and intensity of haematozoa infection in a population of great tits Parus major from Gotland, Sweden. J Avian Biol 25:69–74

    Article  Google Scholar 

  • Anderson JF, Andreadis TG, Main AJ, Kline DL (2004) Prevalence of West Nile virus in tree canopy-inhabiting Culex pipiens and associated mosquitoes. Am J Trop Med Hyg 71:112–119

    PubMed  Google Scholar 

  • Arriero E (2009) Rearing environment effects on immune defence in blue tit Cyanistes caeruleus nestlings. Oecologia 159:697–704

    Article  PubMed  Google Scholar 

  • Arriero E, Moreno J, Merino S, Martínez J (2008) Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiol Biochem Zool 81:195–203

    Article  PubMed  Google Scholar 

  • Atkinson CT, Forrester DJ, Greiner EC (1988) Pathogenicity of Haemoproteus meleagridis (Haemosporina: Haemoproteidae) in experimentally infected domestic turkeys. J Parasitol 74:228–239

    Article  CAS  PubMed  Google Scholar 

  • Atkinson CT, Lease JK, Dusek RJ, Samuel MD (2005) Prevalence of pox-like lesions and malaria in forest bird communities on leeward Mauna Loa volcano, Hawaii. Condor 107:537–546

    Article  Google Scholar 

  • Bardin AV (1979) Method of age determination in field for Parus cristatus. Zool Zh 58:582–584

    Google Scholar 

  • Bennett GF (1970) Simple techniques for making avian blood smears. Can J Zool 48:585–586

    Article  Google Scholar 

  • Bennett GF, Montgomere R, Seutin G (1992) Scarcity of haematozoa in birds breeding on the Arctic tundra of North America. Condor 94:289–292

    Article  Google Scholar 

  • Blanco G, Gajon A, Doval G, Martínez F (1998) Absence of blood parasites in Griffon vultures from Spain. J Wildl Dis 34:640–643

    Article  CAS  PubMed  Google Scholar 

  • Caillouët KA, Riggan AE, Rider M, Bulluck LP (2012) Nest Mosquito Trap quantifies contact rates between nesting birds and mosquitoes. J Vector Ecol 37:210–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Caillouët KA, Riggan AE, Bulluck LP, Carlson JC, Sabo RT (2013) Nesting bird “host funnel” increases mosquito–bird contact rate. J Med Entomol 50:462–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Černý O, Votýpka J, Svobodová M (2011) Spatial feeding preferences of ornithophilic mosquitoes, blackflies and biting midges. Med Vet Entomol 25:104–108

    Article  PubMed  Google Scholar 

  • Cheke RA, Hassall M, Peirce MA (1976) Blood parasites of British birds and notes on their seasonal occurrence at two rural sites in England. J Wildl Dis 12:133–138

    Article  CAS  PubMed  Google Scholar 

  • Choo K, Williams PD, Day T (2003) Predation, host, host mortality, and the evolution of virulence. Ecol Lett 6:310–315

    Article  Google Scholar 

  • Cīrule D, Krama T, Vrublevska J, Rantala MJ, Krams I (2012) A rapid effect of handling on counts of white blood cells in a wintering passerine bird: a more practical measure of stress? J Ornithol 153:161–166

    Article  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes. Development, nutrition and reproduction, vol I. Chapman Hall, London

    Google Scholar 

  • de Jong ME, Fokkema RW, Ubels R, van der Velde M, Tinbergen JM (2014) No evidence for long-term effects of reproductive effort on parasite prevalence in great tits Parus major. J Avian Biol 45:179–186

    Article  Google Scholar 

  • Dornelas M, Connolly SR, Hughes TP (2006) Corals fail a test of neutrality. Nature 440:80–82

    Article  CAS  PubMed  Google Scholar 

  • Duffy MA, Sivars-Becker L (2007) Rapid evolution and ecological host–parasite dynamics. Ecol Lett 10:44–53

    Article  PubMed  Google Scholar 

  • Dunn JC, Goodman SJ, Benton TG, Hamer KC (2013) Avian blood parasite infection during the non-breeding season: an overlooked issue in declining populations? BMC Ecol 13:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunn JC, Goodman SJ, Benton TG, Hamer KC (2014) Active blood parasite infection is not limited to the breeding season in a declining farmland bird. J Parasitol 100:260–266

    Article  PubMed  Google Scholar 

  • Ekman J (1979) Coherence, composition and territories of winter social groups of the willow tit Parus montanus and the crested tit P. cristatus. Ornis Scand 10:56–68

    Article  Google Scholar 

  • Ekman J (1987) Exposure and time use in willow tit flocks: the cost of subordination. Anim Behav 35:445–452

    Article  Google Scholar 

  • Ekman J (1989) Ecology of non-breeding social systems of Parus. Wilson Bull 101:263–288

    Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Ruiz S, Soriguer R, Figuerola J (2013a) On the study of the transmission networks of blood parasites from SW Spain: diversity of avian haemosporidians in the biting midge Culicoides circumscriptus and wild birds. Parasites Vectors 6:208

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, Figuerola J (2013b) Avian plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS ONE 8:e66237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Figuerola J (1999) Effects of salinity on rates of infestation of waterbirds by haematozoa. Ecography 22:681–685

    Article  Google Scholar 

  • Friend M (2002) Avian disease at the Salton Sea. Hydrobiologia 473:293–306

    Article  Google Scholar 

  • Ghosh-Harihar M, Price TD (2014) A test for community saturation along the Himalayan bird diversity gradient, based on within-species geographical variation. J Anim Ecol 83:628–638

    Article  PubMed  Google Scholar 

  • Haddow AJ, Gillett JD, Highton RB (1947) The mosquitoes of Bwamba County, Uganda, V. The vertical distribution and biting cycle of mosquitoes in rainforest, with further observations on microclimate. Bull Entomol Res 37:301–330

    Article  CAS  PubMed  Google Scholar 

  • Hauptmanová K, Literák I, Bartová R (2002) Haematology and Leucocytozoonosis of great tits (Parus major L.) during winter. Acta Vet Brno 71:199–204

    Article  Google Scholar 

  • Hellgren O, Bensch S, Malmqvist B (2008) Bird hosts, blood parasites and their vectors—associations uncovered by molecular analyses of blackfly blood meals. Mol Ecol 17:1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Hendry G (1989) Midges in Scotland. Aberdeen University Press, Aberdeen

    Google Scholar 

  • Hogstad O (1987) Social rank in winter flocks of willow tits Parus montanus. Ibis 129:1–9

    Article  Google Scholar 

  • Ishak HD, Loiseau C, Hull AC, Sehgal RNM (2010) Prevalence of blood parasites in migrating and wintering California hawks. J Rapt Res 4:215–223

    Article  Google Scholar 

  • Ishtiaq F, Guillaumot L, Clegg SM, Phillimore AB, Black RA, Owens IP, Mundy NI, Sheldon BC (2008) Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Mol Ecol 17:4545–4555

    Article  CAS  PubMed  Google Scholar 

  • Johnson PTJ, Stanton DE, Preu ER, Forshay KJ, Carpenter SR (2006) Dining on disease: how interactions between infection and environment affect predation risk. Ecology 87:1973–1980

    Article  PubMed  Google Scholar 

  • Jovani R, Tella JL, Forero MG, Bertellotti M, Blanco G, Ceballos O, Donázar JA (2001) Apparent absence of blood parasites in the Patagonian seabird community: is it related to the marine environment? Waterbirds 24:430–433

    Article  Google Scholar 

  • Kettle DS (1995) Medical and veterinary entomology. CAB International, Wallingford

    Google Scholar 

  • Kim KS, Tsuda Y, Yamada A (2009) Bloodmeal identification and detection of avian malaria parasite from mosquitoes (Diptera: Culicidae) inhabiting coastal areas of Tokyo Bay, Japan. J Med Entomol 46:1230–1234

    Article  PubMed  Google Scholar 

  • Kimura M, Darbro JM, Harrington LC (2010) Avian malaria parasites share congeneric mosquito vectors. J Parasitol 96:144–151

    Article  CAS  PubMed  Google Scholar 

  • Knowles SC, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23:557–569

    Article  CAS  PubMed  Google Scholar 

  • Koivula K, Orell M (1988) Social rank and winter survival in the willow tit Parus montanus. Ornis Fenn 65:114–120

    Google Scholar 

  • Krama T, Krams I, Igaune K (2008) Effects of cover on loud trill-call and soft seet-call use in the crested tit Parus cristatus. Ethology 114:656–661

    Article  Google Scholar 

  • Krams I (1998) Rank-dependent fattening strategies for willow tits Parus montanus and crested tit P. cristatus mixed flocks members. Ornis Fenn 75:19–26

    Google Scholar 

  • Krams I (2001) Seeing without being seen: a removal experiment with mixed flocks of willow and crested tits. Ibis 143:476–481

    Article  Google Scholar 

  • Krams IA, Krams T, Cernihovics J (2001) Selection of foraging sites in mixed willow and crested tit flocks: rank-dependent strategies. Ornis Fenn 78:1–11

    Google Scholar 

  • Krams I, Cirule D, Krama T, Hukkanen M, Rytkönen S, Orell M, Iezhova T, Rantala MJ, Tummeleht L (2010) Effects of forest management on haematological parameters, blood parasites, and reproductive success of the Siberian tit (Poecile cinctus) in northern Finland. Ann Zool Fenn 47:335–346

    Article  Google Scholar 

  • Krams I, Vrublevska J, Cirule D, Krama T (2011) Extremely low ambient temperature affects haematological parameters and body condition in wintering great tits (Parus major). J Ornithol 152:889–895

    Article  Google Scholar 

  • Krams I, Suraka V, Rattiste K, Abolins-Abols M, Krama T, Rantala MJ, Mierauskas P, Cirule D, Saks L (2012a) Comparative analysis reveals a possible immunity-related absence of blood parasites in common gulls (Larus canus) and black-headed gulls (Chroicocephalus ridibundus). J Ornithol 153:1245–1254

    Article  Google Scholar 

  • Krams I, Suraka V, Cīrule D, Hukkanen M, Tummeleht L, Mierauskas P, Rytkönen S, Rantala MJ, Vrublevska J, Orell M, Krama T (2012b) A comparison of microscopy and PCR diagnostics for low intensity infections of haemosporidian parasites in the Siberian tit Poecile cinctus. Ann Zool Fenn 49:331–340

    Article  Google Scholar 

  • Krams IA, Suraka V, Rantala MJ, Sepp T, Mierauskas P, Vrublevska J, Krama T (2013) Acute infection of avian malaria impairs concentration of hemoglobin and survival in juvenile altricial birds. J Zool 291:34–41

    Article  Google Scholar 

  • Kullberg C (1995) Strategy of pygmy owl while hunting avian and mammalian prey. Ornis Fenn 72:72–78

    Google Scholar 

  • Kullberg C, Ekman J (2000) Does predation maintain tit community diversity? Oikos 89:41–45

    Article  Google Scholar 

  • Laaksonen M, Lehikoinen E (1976) Age determination of willow and crested tit Parus montanus and P. cristatus. Ornis Fenn 53:9–14

    Google Scholar 

  • Lacorte GA, Félix GMF, Pinheiro RRB, Chaves AV, Almeida-Neto G et al (2013) Exploring the diversity and distribution of Neotropical avian malaria parasites—a molecular survey from Southeast Brazil. PLoS ONE 8(3):e57770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lens L, Dhondt AA (1992) Variation in coherence of crested tit winter flocks: an example of multivariate optimization. Acta Oecol 13:553–567

    Google Scholar 

  • Little RM, Earle RA (1995) Sandgrouse (Pterocleidae) and sociable weavers Philetairus socius lack avian haematozoa in semi-arid regions of South Africa. J Arid Environ 30:367–370

    Article  Google Scholar 

  • Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, Carlson JS, Seppi B, Sehgal RNM (2012) First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS ONE 7(9):e44729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Main AJ, Tonn RJ, Randall EJ, Anderson KS (1966) Mosquito densities at heights of five and twenty-five feet in southeastern Massachusetts. Mosquito News 26:243–248

    Google Scholar 

  • Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S, Belda EJ (2010) The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett 6:663–665

    Article  Google Scholar 

  • Martínez-de la Puente J, Martínez J, Rivero-de Aguilar J, Herrero J, Merino S (2011) On the specificity of avian blood parasites: revealing specific and generalist relationships between haemosporidians and biting midges. Mol Ecol 20:3275–3287

    Article  PubMed  Google Scholar 

  • Martínez-De la Puente J, Martínez J, Rivero-De-Aguilar J, Del Cerro S, Merino S (2013) Vector abundance determines Trypanosoma prevalence in nestling blue tits. Parasitology 140:1009–1015

    Article  PubMed  Google Scholar 

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits. Proc R Soc Lond B 267:2507–2510

    Article  CAS  Google Scholar 

  • Midega JT, Smith DL, Olotu A, Mwangangi JM, Nzovu JG, Wambua J, Nyangweso G, Mbogo CM, Christophides GK, Marsh K, Bejon P (2012) Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat Commun 3:674

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mitchell L (1982) Time segregated mosquito collections with a CDC miniature light trap. Mosquito News 42:12–18

    Google Scholar 

  • Møller AP (2008) Flight distance and blood parasites in birds. Behav Ecol 19:1305–1313

    Article  Google Scholar 

  • Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    Article  PubMed  Google Scholar 

  • Morozov A, Adamson M (2011) Evolution of virulence driven by predator–prey interaction: possible consequences for population dynamics. J Theor Biol 276:181–191

    Article  PubMed  Google Scholar 

  • Njabo KY, Cornel AJ, Sehgal RN, Loiseau C, Buermann W, Harrigan RJ, Pollinger J, Valkiūnas G, Smith TB (2009) Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malaria J 8:193

    Article  CAS  Google Scholar 

  • Novak RJ, Peloquin J, Rohrer W (1981) Vertical distribution of adult mosquitoes (Diptera: Culicidae) in a northern deciduous forest in Indiana. J Med Entomol 18:116–122

    Article  Google Scholar 

  • Oakgrove KS, Harrigan RJ, Loiseau C, Guers S, Seppi B, Sehgal RN (2014) Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Int J Parasitol 44:717–727

    Article  PubMed  Google Scholar 

  • Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP (2003) Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol Lett 6:797–802

    Article  Google Scholar 

  • Palinauskas V, Valkiūnas G, Križanauskienė A, Bensch S, Bolshakov CV (2009) Plasmodium relictum (lineage P-SGS1): further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone. Exp Parasitol 123:134–139

    Article  CAS  PubMed  Google Scholar 

  • Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure. Oikos 80:623–631

    Article  Google Scholar 

  • Reisen WK, Meyer RP, Tempelis CH, Spoehel JJ (1990) Mosquito abundance and bionomics in residential communities in Orange and Los Angeles counties, California. J Med Entomol 27:356–367

    Article  CAS  PubMed  Google Scholar 

  • Rintamäki PT, Ojanen M, Pakkala H, Tynjala M, Lundberg A (2000) Blood parasites of juvenile willow tits Parus montanus during autumn migration in northern Finland. Ornis Fenn 77:83–87

    Google Scholar 

  • Rytkönen S, Krams I (2003) Does foraging behaviour explain the poor breeding success of great tits Parus major in northern Europe? J Avian Biol 34:288–297

    Article  Google Scholar 

  • Rytkönen S, Ilomaki K, Orell M, Welling P (1996) Absence of blood parasites in willow tits Parus montanus in northern Finland. J Avian Biol 27:173–174

    Article  Google Scholar 

  • Savage HM, Anderson M, Gordon E, McMillen L, Colton L, Delorey M, Sutherland G, Aspen S, Charnetzky D, Burkhalter K, Godsey M (2008) Host-seeking heights, host-seeking activity patterns, and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). J Med Entomol 45:276–288

    Article  PubMed  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, New York

    Google Scholar 

  • Sehgal RNM (2010) Deforestation and avian infectious diseases. J Exp Biol 213:955–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Service MW (1971) Flight periodicities and vertical distribution of Aedes cantans (Mg.), Ae. geniculatus (O1.), Anopheles plumbeus Steph. and Culex pipiens L. (Dipt., Culicidae) in southern England. Bull Entomol Res 60:639–651

    Article  CAS  PubMed  Google Scholar 

  • Siffczyk C, Brotons L, Kangas K, Orell M (2003) Home range size of willow tits: a response to winter habitat loss. Oecologia 136:635–642

    Article  PubMed  Google Scholar 

  • Snow D, Perrins C (1997) The birds of the Western Palearctic. Oxford University Press, Oxford

    Google Scholar 

  • Sol D, Jovani R, Torres J (2000) Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23:307–314

    Article  Google Scholar 

  • Spungis V (2000) A checklist of Latvian mosquitoes (Diptera, Culicidae). Eur Mosquito Bull 6:8–11

    Google Scholar 

  • Spuris Z (1974) Divspārņi—Diptera. Latvijas dzīvnieku pasaule. Liesma, Rīga

    Google Scholar 

  • Stewart IRK, Ringsby TH, Solberg EJ (1997) Absence of haematozoa in passerines from a Norwegian archipelago. Ornis Fenn 74:201–203

    Google Scholar 

  • Stjernman M, Råberg L, Nilsson JA (2008) Maximum host survival at intermediate parasite infection intensities. PLoS ONE 3:e2463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Svensson-Coelho M, Ricklefs RE (2011) Host phylogeography and beta diversity in avian haemosporidian (Plasmodiidae) assemblages of the Lesser Antilles. J Anim Ecol 80:938–946

    Article  PubMed  Google Scholar 

  • Valera F, Carrillo CM, Barbosa A, Moreno E (2003) Low prevalence of haematozoa in trumpeter finches Bucanetes githagineus from south-eastern Spain: additional support for a restricted distribution of blood parasites in arid lands. J Arid Environ 55:209–213

    Article  Google Scholar 

  • Valkiūnas GA (1993a) The role of seasonal migrations in the distribution of Haemosporidia of birds in North Palearctic. Ekologija (Vilnius) 2:57–67

    Google Scholar 

  • Valkiūnas GA (1993b) Pathogenic influence of haemosporidians and trypanosomes on wild birds in the field conditions: fact and hypotheses. Ekologija (Vilnius) 1:47–60

    Google Scholar 

  • Valkiūnas G (1998) Haematozoa of wild birds: peculiarities in their distribution and pathogenicity. Bull Scand Soc Parasitol 8:39–46

    Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  • Valkiūnas G (2011) Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Mol Ecol 20:3084–3086

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Iezhova TA (2004) Detrimental effects of Haemoproteus infections on the biting midge Culicoides impunctatus (Diptera, Ceratopogonidae). J Parasitol 90:194–196

    Article  PubMed  Google Scholar 

  • Van Riper C III (1991) The impact of introduced vectors and avian malaria on insular passeriform bird population in Hawaii. Bull Soc Vector Ecol 16:59–83

    Google Scholar 

  • Van Riper C III, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  • Warner RE (1968) The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70:101–120

    Article  Google Scholar 

  • Wood MJ, Cosgrove CL, Wilkin TA, Knowles SC, Day KP, Sheldon BC (2007) Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus. Mol Ecol 16:3263–3273

    Article  CAS  PubMed  Google Scholar 

  • Young BE, Garvin MC, McDonald DB (1993) Blood parasites in birds from Monteverde, Costa Rica. J Wildl Dis 29:555–560

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Zhang S, Wang J, Zheng X, Huang F, Li W, Xu X, Zhang H (2012) Spatial correlation between malaria cases and water bodies in Anopheles sinensis dominated areas of Huang-Huai plain, China. Parasites Vectors 5:106

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Aleksejs Osipovs for his help with birds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrikis A. Krams.

Additional information

Communicated by K. C. Klasing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krama, T., Krams, R., Cīrule, D. et al. Intensity of haemosporidian infection of parids positively correlates with proximity to water bodies, but negatively with host survival. J Ornithol 156, 1075–1084 (2015). https://doi.org/10.1007/s10336-015-1206-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1206-5

Keywords

Navigation