Skip to main content

Advertisement

Log in

Habitat at the mountain tops: how long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Ongoing monitoring in the Swiss Alps has shown that Rock Ptarmigan (Lagopus muta helvetica) has suffered a significant population decrease over the last decade and climate change has been proposed as a potential cause. In this study, we investigate the response of this high alpine grouse species to rapid climate change. We address a problem often neglected in macro-ecological studies on species distribution: scale-dependency of distribution models. The models are based on empirical field data and on environmental databases for large-scale models. The implementation of several statistical modelling approaches, external validation strategies and the implementation of a recent study on regional climate change in Switzerland ensure robust predictions of future range shifts. Our results demonstrate that, on the territory level, variables depicting vegetation, heterogeneity of local topography and habitat structure have greatest explanatory power. In contrast at the meso-scale and macro-scale (with grain sizes of 1 and 100 km2, respectively), bioclimatic and land cover-related variables play a prominent role. The models predict that, based on increasing temperatures during the breeding season, potential habitat will decrease by up to two-thirds until the year 2070. At the same time, a shift of potential habitat towards the mountain tops is predicted. The multi-scale approach highlights the true extent of potential habitat for this species with its patchy distribution in steep terrain. The small-scale analysis pinpoints the key habitat areas within the extensive areas of suitable habitat predicted by models on large grain sizes and in this way reveals sub-grid variability. Our results can facilitate the adaptation of species conservation strategies to a quickly changing environment.

Zusammenfassung

Habitat auf den Gipfeln der Berge: Wie lange kann das Alpenschneehuhn ( Lagopus muta helvetica ) raschen Klimawandel in den Schweizer Alpen überleben? Ein mehrskaliger Ansatz.

Fortlaufendes Monitoring hat gezeigt, dass innerhalb des letzten Jahrzehnts die Population des Alpenschneehuhns (Lagopus muta helvetica) in den Schweizer Alpen stark abgenommen hat. Als mögliche Ursache kommt der Klimawandel in Betracht. In dieser Studie untersuchen wir die Auswirkungen raschen Klimawandels auf dieses hochalpine Raufußhuhn. Dabei setzten wir uns mit einem Aspekt auseinander, der in vielen makroökologischen Studien oft vernachlässigt wird: die Skalenabhängigkeit von Habitatmodellen. Die Modelle basieren auf empirischen Felddaten und auf Umweltdatenbanken für die großskaligen Modelle. Die Anwendung mehrerer, statistischer Modelle, externe Validierung und die Daten einer aktuellen Studie zum Klimawandel in der Schweiz legen die Grundlage für robuste Vorhersagen der künftigen Verbreitung des Alpenschneehuhns. Unsere Ergebnisse zeigen, dass auf der Revierskala Variablen, die die Vegetation, die lokale Topographie und Habitatstruktur beschreiben die größte Vorhersagekraft haben. Im Gegensatz dazu spielen auf der Mesoskala (Korngröße 1 km2) und Makroskala (Korngröße 100 km2) bioklimatische und land cover Variablen die herausragende Rolle. Die Modelle sagen vorher, dass sich allein aufgrund einer erhöhten Durchschnittstemperatur während der Brutzeit das potenzielle Habitat bis zum Jahre 2070 um bis zu zwei Drittel verringern wird. Zudem findet eine Verschiebung in Richtung Gebirgsgipfel statt. Insbesondere für Arten, die steiles Terrain bewohnen und lückenhafte Verbreitung aufweisen wie das Alpenschneehuhn, verdeutlicht die Analyse auf mehreren Skalen das wirkliche Ausmaß des potenziellen Habitats. So zeigt die feinskalige Analyse die bevorzugten Gebiete innerhalb der großräumigen Gebiete auf, welche die Modelle auf den großen Skalen vorhersagen und verdeutlicht auf diese Weise die Variabilität innerhalb der Rasterzellen. Unsere Ergebnisse können einen Beitrag zur Anpassung der Naturschutzstrategien zur Arterhaltung in einer sich schnell verändernden Umwelt leisten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerly D, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16:476–487

    Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    PubMed  Google Scholar 

  • Araújo M, Pearson RG, Thuiller W, Erhard M (2005) Validation of species—climate impact models under climate change. Glob Change Biol 11:1504–1513

    Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Google Scholar 

  • Bolliger J, Kienast F, Zimmermann NE (2000) Risks of global warming on montane and subalpine forests of Switzerland—a modeling case study. Reg Environ Change 1(3–4):99–111

    Google Scholar 

  • Bossert A (1995) Bestandsentwicklung und Habitatnutzung des Alpenschneehuhns Lagopus mutus im Aletschgebiet (Schweizer Alpen). Ornithol Beob 92(3):307–314

    Google Scholar 

  • Brambilla M, Rubolini D, Guidali F (2006) Factors affecting breeding habitat selection in a cliff-nesting peregrine Falco peregrinus population. J Ornithol 147:428–435

    Google Scholar 

  • Breiman L (2001) Random forests. Machine Learning 45:5–32

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20:37–46

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davis R, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Dormann CF, Purschke O, García-Marquez J, Lautenbach S, Schröder B (2008) Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology 89(12):3371–3386

    PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Garcia Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne P, Reineking B, Schröder B, Skidmore A, Zurell D, Lautenbach S (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (in press)

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    CAS  PubMed  Google Scholar 

  • Fasel M, Zbinden N (1983) Kausalanalyse zum Verlauf der südlichen Arealgrenze des Alpenschneehuhns Lagopus mutus im Tessin. Ornithol Beob 80:231–246

    Google Scholar 

  • Favaron M, Scherini GC, Preatoni D, Tos G, Wauters LA (2006) Spacing behaviour and habitat use of rock ptarmigan (Lagopus mutus) at low density in the Italian Alps. J Ornithol 147:618–628

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence-absence models. Environ Conserv 24(1):38–49

    Google Scholar 

  • Freeman EA, Moisen G (2008) Presenceabsence: an R package for presence absence analysis. J Stat Softw 23:1–31

    Google Scholar 

  • Frei C (2004) Die Klimazukunft der Schweiz—eine probabilistische Projektion. In: Die Schweiz im Jahre 2050. OcCC, Bern

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models. J Geophys Res

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM, Bezzel E (1973) Handbuch der Vögel Mitteleuropas, vol 5: Galliformes und Gruiformes. Akademische, Frankfurt a. M.

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landsc Ecol 20:703–717

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2915

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186

    Google Scholar 

  • Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr 13(5):469–471

    Google Scholar 

  • Hegg O, Béguin C, Zoller H (1993) Atlas schutzwürdiger Vegetationstypen der Schweiz. Bundesamt für Umwelt, Wald und Landschaft, Bern

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley series in probability and statistics, 2nd edn. Wiley, New York

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    CAS  PubMed  Google Scholar 

  • Huntley B, Collingham YC, Green RE, Hilton GM, Rahbek C, Willis SG (2006) Potential impacts of climatic change upon geographical distributions of birds. Ibis 148:8–28

    Google Scholar 

  • IPCC (2007) Fourth assessment report intergovernmental panel on climate change. http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  • Keller V, Gerber A, Schmid H, Volet B, Zbinden N (2010) Rote Liste Brutvögel. Gefährdete Arten der Schweiz, Stand 2010. Bundesamt für Umwelt, Bern, und S chweizerische Vogelwarte, Sempach. Umwelt-Vollzug Nr. 1019

  • Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13:66–69

    Google Scholar 

  • Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281

    Google Scholar 

  • Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72(3):445–463

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Google Scholar 

  • Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Change Biol 14:483–494

    Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42

    Google Scholar 

  • Marti C, Bossert A (1985) Beobachtungen zur Sommerkativität und Brutbiologie des Alpenschneehuhns Lagopus mutus im Aletschgebiet (Wallis). Ornithol Beob 82:153–168

    Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with kappa statistic. Ecol Model 62:275–293

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emission scenarios. A special report of working group III for the Integovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Neilson RP, Pitelka LF, Solomon AM, Nathan R, Midgley GF, Fragoso JMV, Lischke H, Thompson K (2005) Forecasting regional to global plant migration in response to climate change. Bioscience 55:749–759

    Google Scholar 

  • Oppel S, Schaefer HM, Schmidt V, Schröder B (2004) Habitat selection by the pale-headed brush-finch, Atlapetes pallidiceps, in southern Ecuador: implications for conservation. Biol Conserv 118(1):33–40

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–372

    Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27(3):285–298

    Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, Mcclean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Google Scholar 

  • Popy S, Bordignon L, Prodon R (2010) A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J Biogeogr 37:57–67

    Google Scholar 

  • Prasad A, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8(2):224–239

    Google Scholar 

  • Randin C, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15(6):1557–1569

    Google Scholar 

  • Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Model 193:675–690

    Google Scholar 

  • Rorison IH, Gupta PL, Hunt R (1986) Local climate, topography and plant growth in Lathkill Dale NNR. II. Growth and nutrient uptake within a single season. Plant Cell Environ 9:57–64

    Google Scholar 

  • Schmid H, Luder R, Naef-Daenzer B, Graf R, Zbinden N (1998) Schweizer Brutvogelatlas. Verbreitung der Brutvögel in der Schweiz und im Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte, Sempach

  • Speakman JR, Król E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746

    PubMed  Google Scholar 

  • Tanneberger F, Flade M, Preiksa Z, Schröder B (2010) Habitat selection of the globally threatened Aquatic Warbler at the western margin of the breeding range: implications for management. Ibis 152:347–358

    Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    CAS  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    CAS  Google Scholar 

  • Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower hudson river, New York (USA). Landsc Ecol 17(6):569–586

    Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in europe? J Biogeogr 31(3):353–362

    Google Scholar 

  • Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353

    Google Scholar 

  • Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol 36:269–281

    Google Scholar 

  • von dem Bussche J, Spaar R, Schmid H, Schröder B (2008) Modelling the recent and potential future spatial distribution of ring ouzel (Turdus torquatus) and blackbird (T. merula) in Switzerland. J Ornithol 149:529–544

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Zurell D, Jeltsch F, Dormann CF, Schröder B (2009) Static species distribution models in dynamically changing systems: how good can predictions really be? Ecography 32(5):733–774

    Google Scholar 

  • Zurell D, Grimm V, Rossmanith E, Zbinden N, Zimmermann NE, Schröder B (2011) Uncertainty in predictions of range dynamics: Black Grouse climbing the Swiss Alps. Ecography (in press). doi:https://doi.org/10.1111/j.1600-0587.2011.07200.x

Download references

Acknowledgments

This study has been partly funded by the German Academic Foreign Exchange Service (DAAD) and the Heinrich Böll Foundation. Furthermore, we owe a big thank you to all collaborators who contributed to complete the Swiss breeding bird atlas and to the reviewers who helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Revermann.

Additional information

Communicated by T. Gottschalk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 744 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revermann, R., Schmid, H., Zbinden, N. et al. Habitat at the mountain tops: how long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J Ornithol 153, 891–905 (2012). https://doi.org/10.1007/s10336-012-0819-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-012-0819-1

Keywords

Navigation