Skip to main content
Log in

Scanning behaviour of foraging Ruffs Philomachus pugnax during spring migration: is flock size all that matters?

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

This study tested for effects of flock size and other potentially important variables (location, vegetation cover, wind force, cloud cover, date, time of day, feeding habitat, number of other waders and peck rate) on the vigilance level of foraging Ruffs Philomachus pugnax during spring migration at Seewinkel, an important stopover site for waders in Eastern Austria. Therefore, foraging Ruffs were filmed at four different salt ponds, with a final total of 681 film sequences being available for analysis. To test for effects of predictor variables on scan rate (number of scans per 30 s) of foraging Ruffs, generalised linear models (GLMs) were calculated including all variables and all possible subsets. Three variables remained in all 30 best GLMs (selected according to Akaike’s information criterion) testing for effects on scan rate of foraging Ruffs: feeding location, feeding habitat and flock size. These variables also significantly affected Ruffs’ scan rates according to Wald statistics. Besides differences of scan rates between feeding locations, the vigilance level was significantly higher in terrestrially foraging Ruffs than in birds feeding at semi-aquatic habitat patches. Furthermore, scan rate decreased with increasing flock size. Our study emphasized that, even when controlled for other variables affecting scan rates, flock size still remains important for explaining variance in vigilance levels of foraging Ruffs.

Zusammenfassung

Die vorliegende Studie testete Effekte von Truppgröße und anderen potentiell wichtigen Variablen (Standort, Vegetationsbedeckung, Windstärke, Bewölkung, Datum, Tageszeit, Nahrungshabitat, Anzahl anderer Limikolen und Pickrate) auf das Sicherungsverhalten von Kampfläufern Philomachus pugnax während des Frühjahrszuges im Seewinkel, einem wichtigen Rastplatz für Limikolen in Ostösterreich. Hierfür wurden Kampfläufer während der Nahrungssuche an vier Salzlacken gefilmt. Insgesamt standen 681 Filmsequenzen für Analysen zur Verfügung. Um Effekte der Prädiktorvariablen auf die Sicherungsrate (Häufigkeit des Sicherungsverhalten pro 30 s) furagierender Kampfläufer zu testen, wurden Verallgemeinerte Lineare Modelle (VLMs) berechnet, wobei alle Variablen und alle möglichen Kombinationen von Teilmengen der berücksichtigten Variablen inkludiert wurden. Drei Variablen verblieben in allen 30 besten VLMs (ausgewählt nach dem Akaike-Informationskriterium) zum Testen von Effekten auf die Sicherungsrate von Kampfläufern: Standort, Nahrungshabitat und Truppgröße. Für diese Variablen zeigte auch die Wald-Statistik einen signifikanten Effekt auf die Sicherungsrate auf. Neben Unterschieden der Sicherungsrate zwischen den Standorten, wiesen an Land furagierende Kampfläufer eine signifikant höhere Sicherungsrate auf als semi-aquatisch Nahrung suchende Vögel. Zudem nahm die Sicherungsrate mit zunehmender Truppgröße ab. Unsere Arbeit hebt – bei gleichzeitiger Berücksichtigung anderer, die Sicherungsrate beeinflussender Variablen – die Bedeutung der Truppgröße hervor, um die Varianz der Sicherungsrate von furagierenden Kampfläufern zu erklären.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arenz CL (2003) The group size effect on vigilance: many unanswered questions. Behav Processes 63:123–124

    PubMed  Google Scholar 

  • Barbosa A (2003) Group size effects on vigilance: we need more bricks in the wall. Behav Processes 63:133–134

    PubMed  Google Scholar 

  • Barnard CJ (1981) Factors affecting flock size mean and variance in a winter population of house sparrows. Behaviour 74:114–127

    Google Scholar 

  • Beauchamp G (1998) The effect of group size on mean food intake rate in birds. Biol Rev 73:449–472

    Google Scholar 

  • Beauchamp G (2001) Should vigilance always decrease with group size? Behav Ecol Sociobiol 51:47–52

    Google Scholar 

  • Beauchamp G (2003a) Group-size effects on vigilance: a search for mechanisms. Behav Processes 63:111–121

    PubMed  Google Scholar 

  • Beauchamp G (2003b) Group-size effects on vigilance: a search for mechanisms–reply. Behav Processes 63:141–145

    PubMed  Google Scholar 

  • Beauchamp G (2008) What is the magnitude of the group-size effect on vigilance? Behav Ecol 19:1361–1368

    Google Scholar 

  • Beauchamp G (2009) How does food density influence vigilance in birds and mammals? Anim Behav 78:223–231

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, Berlin

    Google Scholar 

  • Caraco T, Martindale S, Pulliam HR (1980a) Avian flocking in the presence of a predator. Nature 285:400–401

    Google Scholar 

  • Caraco T, Martindale S, Pulliam HR (1980b) Avian time budgets and distance from cover. Auk 97:872–875

    Google Scholar 

  • Catterall CP, Elgar MA, Kikkawa J (1992) Vigilance does not covary with group size in an island population of silvereyes (Zosterops lateralis). Behav Ecol 3:207–210

    Google Scholar 

  • Clark CW, Mangel M (1986) The evolutionary advantages of group foraging. Theor Popul Biol 30:45–75

    Google Scholar 

  • Crawley MJ (1993) GLIM for ecologists. Blackwell, Oxford

    Google Scholar 

  • Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks Tringa totanus. Anim Behav 47:433–442

    Google Scholar 

  • Cresswell W, Lind J, Quinn JL (2010) Predator hunting success and prey vulnerability: quantifying the spatial scale over which lethal and non-lethal effects of predation occur. J Anim Ecol 79:556–562

    PubMed  Google Scholar 

  • Dias RI (2006) Effects of position and flock size on vigilance and foraging behaviour of the scaled dove Columbina squammata. Behav Processes 73:248–252

    PubMed  Google Scholar 

  • Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64:13–33

    CAS  PubMed  Google Scholar 

  • Evans PR (1976) Energy balance and optimal foraging strategies in shorebirds: some implications for their distributions and movements in the non-breeding season. Ardea 64:117–139

    Google Scholar 

  • Fritz H, Guillemain M, Durant D (2002) The cost of vigilance for intake rate in the mallard (Anas platyrhynchos) an approach through foraging experiments. Ethol Ecol Evol 14:91–97

    Google Scholar 

  • Gill JA, Norris K, Sutherland WJ (2001) Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv 97:265–268

    Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–331

    CAS  PubMed  Google Scholar 

  • Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234

    PubMed  Google Scholar 

  • Hilton GM, Ruxton GD, Cresswell W (1999) Choice of foraging area with respect to predation risk in redshanks: the effects of weather and predator activity. Oikos 87:295–302

    Google Scholar 

  • Hogstad O (1988) Advantages of social foraging in willow tits Parus montanus. Ibis 130:275–283

    Google Scholar 

  • Kohler B, Rauer G (2009) Bestandsgrößen und räumliche Verteilung durchziehender Limikolen im Nationalpark Neusiedler See-Seewinkel in den Jahren 1995–2001. Egretta 50:14–50

    Google Scholar 

  • Krammer M (2005) Growth regulation of soda lake bacterial communities by environmental factors assessed in laboratory batch culture experiments. Diploma thesis, University of Vienna, Vienna

  • Laber J (2003) Die Limikolen des österreichisch/ungarischen Seewinkels. Egretta 46:1–91

    Google Scholar 

  • Lazarus J, Symonds M (1992) Contrasting effects of protective and obstructive cover on avian vigilance. Anim Behav 43:519–521

    Google Scholar 

  • Lima SL (1987) Distance to cover, visual obstructions, and vigilance in house sparrows. Behaviour 102:231–238

    Google Scholar 

  • Lima SL (1988) Initiation and termination of daily feeding in dark-eyed juncos: influences of predation risk and energy reserves. Oikos 53:3–11

    Google Scholar 

  • Lima SL, Bednekoff PA (1999) Back to the basics of antipredatory vigilance: can nonvigilant animals detect attack? Anim Behav 58:537–543

    CAS  PubMed  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Google Scholar 

  • Lima SL, Zollner PA, Bednekoff PA (1999) Predation, scramble competition, and the vigilance group size effect in dark-eyed juncos (Junco hyemalis). Behav Ecol Sociobiol 46:110–116

    Google Scholar 

  • Lyons JE, Haig SM (1995) Fat content and stopover ecology of spring migrant semipalmated sandpipers in South Carolina. Condor 97:427–437

    Google Scholar 

  • McNamara JM, Houston AI (1992) Evolutionarily stable levels of vigilance as a function of group size. Anim Behav 43:641–658

    Google Scholar 

  • Metcalfe NB (1984) The effects of mixed-species flocking on the vigilance of shorebirds: who do they trust? Anim Behav 32:968–993

    Google Scholar 

  • Muraoka Y, Schulze CH, Pavličev M, Wichmann G (2009) Spring migration dynamics and sex-specific patterns in stopover strategy in the wood sandpiper Tringa glareola. J Ornithol 150:313–319

    Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Pss, London

    Google Scholar 

  • Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38:419–422

    CAS  PubMed  Google Scholar 

  • Randler C (2005) Vigilance during preening in coots Fulica atra. Ethology 169:169–178

    Google Scholar 

  • Riddington R, Hassall M, Lane SL, Turner PA, Walters R (1996) The impact of disturbance on the behaviour and energy budgets of brent geese Branta b. bernicla. Bird Study 43:269–279

    Google Scholar 

  • Roberts G (1996) Why individual vigilance declines as group size increases. Anim Behav 51:1077–1086

    Google Scholar 

  • Robinette RL, Ha JC (2001) Social and ecological factors influencing vigilance by northwestern crows, Corvus caurinus. Anim Behav 62:447–452

    Google Scholar 

  • Rolando A, Caldoni R, De Sanctis A, Laiolo P (2001) Vigilance and neighbour distance in foraging flocks of red-billed choughs, Pyrrhocorax pyrrhocorax. J Zool 253:225–232

    Google Scholar 

  • Sansom A, Cresswell W, Minderman J, Lind J (2008) Vigilance benefits and competition costs in groups: do individual Redshanks gain an overall foraging benefit? Anim Behav 75:1869–1875

    Google Scholar 

  • Scheufler H, Stiefel A (1985) Der Kampfläufer. Ziemsen, Lutherstadt Wittenberg

    Google Scholar 

  • Schradin C (2000) Confusion effect in a reptilian and a primate predator. Ethology 95:580–699

    Google Scholar 

  • Sirot E (2006) Social information, antipredatory vigilance and flight in bird flocks. Anim Behav 72:373–382

    Google Scholar 

  • Slotow R, Coumi N (2000) Vigilance in bronze mannikin groups: the contributions of predation risk and intra-group competition. Behaviour 137:565–578

    Google Scholar 

  • Slotow R, Rothstein SI (1995) Influence of social status, distance from cover, and group size on feeding and vigilance in white-crowned sparrows. Auk 112:1024–1031

    Google Scholar 

  • Statsoft Inc (2005) STATISTICA (data analysis software system), version 7.1. www.statsoft.com

  • Wagenmakers E-J, Farrell S (2004) AIC model selection using Akaike weights. Psychon B Rev 11:192–196

    Google Scholar 

  • Ward C, Low BS (1997) Predictors of vigilance for American crows foraging in an urban environment. Wilson Bull 109:481–489

    Google Scholar 

  • Watson M, Aebischer NJ, Cresswell W (2007) Vigilance and fitness in grey partridges Perdix perdix: the effects of group size and foraging-vigilance trade-offs on predation mortality. J Anim Ecol 76:211–221

    PubMed  Google Scholar 

  • Weber TP, Bruno JE, Houston AI (1998) Optimal avian migration: a dynamic model of fuel stores and site use. Evol Ecol 12:377–401

    Google Scholar 

  • Whitfield DP (2003) Redshank Tringa totanus flocking behaviour, distance from cover and vulnerability to sparrowhawk Accipiter nisus predation. J Avian Biol 34:163–169

    Google Scholar 

  • Whittingham MJ, Evans KL (2004) The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146:210–220

    Google Scholar 

  • Wielander B (2005) Comparison of intact and degraded shallow soda ponds in the “Seewinkel” with the help of radiochemical and analytical methods. Diploma thesis, University of Vienna, Vienna

  • Wolfram G, Donabaum K, Schagerl M, Kowarc VA (1999) The zoobenthic community of salt pans in Austria–preliminary results on phenology and the impact of salinity on benthic invertebrates. Hydrobiologia 408(409):193–202

    Google Scholar 

Download references

Acknowledgments

In particular, we are grateful to Alfred Grüll, Alois Herzig (Biologische Station Illmitz) and Bernhard Kohler (WWF Austria) who provided invaluable support throughout the field work. Will Cresswell and a second anonymous reviewer provided helpful comments on an earlier manuscript version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Schütz.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütz, C., Schulze, C.H. Scanning behaviour of foraging Ruffs Philomachus pugnax during spring migration: is flock size all that matters?. J Ornithol 152, 609–616 (2011). https://doi.org/10.1007/s10336-010-0631-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-010-0631-8

Keywords

Navigation