Skip to main content

Advertisement

Log in

Voxel-based mapping of five MR biomarkers in the wrist bone marrow

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

MRI is a reliable and accurate technique to characterize rheumatoid arthritis. The aim of this study was to provide voxel-by-voxel 3D maps of the proton density fat fraction (PDFF), the T1 of water (T1W), the T1 of fat (T1F), the T2* of water (T2*W), the T2* of fat (T2*F) in the wrist bone marrow.

Materials and methods

The experiments were conducted on 14 healthy volunteers (mean age: 24 ± 4). The data were acquired at 1.5 T using two optimized four-echo 3D 1.2 × 1.2 × 1.2 mm3-isotropic spoiled gradient sequences. A repeatability study was carried out. The measurements were done using a homemade parametric viewer software.

Results

The inter-volunteer results were, on average: PDFF = 86 ± 3%, T1W = 441 ± 113 ms, T1F = 245 ± 19 ms, T2*W = 6 ± 1 ms and T2*F = 16 ± 3 ms. The coefficients of variation were for fat based biomarkers CVPDFF < 5%, CVT1F < 15% and CVT2*F < 10% in the repeatability study.

Discussion

The protocol and quantification tool proposed in this study provide high-resolution voxel-by-voxel 3D maps of five biomarkers in the wrist in less than 4 min of acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26:389–400. https://doi.org/10.1088/0031-9155/26/3/003

    Article  CAS  PubMed  Google Scholar 

  2. Kricun ME (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skelet Radiol 14:10–19. https://doi.org/10.1007/BF00361188

    Article  CAS  Google Scholar 

  3. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH (1975) Report of the task group on reference man. Pergamon, Oxford

    Google Scholar 

  4. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (1998) Magnetic resonance imaging of the normal bone marrow. Skelet Radiol 27:471–483. https://doi.org/10.1007/s002560050423

    Article  CAS  Google Scholar 

  5. Bermeo S, Gunaratnam K, Duque G (2014) Fat and bone interactions. Curr Osteoporos Rep 12:235–242. https://doi.org/10.1007/s11914-014-0199-y

    Article  PubMed  Google Scholar 

  6. Schick F (1996) Bone marrow NMR in vivo. Prog Nucl Magn Reson Spectrosc 29:169–227. https://doi.org/10.1016/S0079-6565(96)01030-8

    Article  CAS  Google Scholar 

  7. Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS et al (2018) Quantitative MRI and spectroscopy of bone marrow: quantitative MR of bone marrow. J Magn Reson Imaging 47:332–353. https://doi.org/10.1002/jmri.25769

    Article  PubMed  Google Scholar 

  8. Takasu M, Kaichi Y, Tani C, Date S, Akiyama Y, Kuroda Y et al (2015) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging as a biomarker for symptomatic multiple myeloma. PLoS ONE 10:e0116842. https://doi.org/10.1371/journal.pone.0116842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoo HJ, Hong SH, Kim DH, Choi J-Y, Chae HD, Jeong BM et al (2017) Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes: measuring fat content in vertebral marrow. J Magn Reson Imaging 45:1534–1544. https://doi.org/10.1002/jmri.25496

    Article  PubMed  Google Scholar 

  10. Carmona R, Pritz J, Bydder M, Gulaya S, Zhu H, Williamson CW et al (2014) Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol * Biol * Phys 90:155–163. https://doi.org/10.1016/j.ijrobp.2014.05.041

    Article  Google Scholar 

  11. Kühn J-P, Hernando D, Meffert PJ, Reeder S, Hosten N, Laqua R et al (2013) Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol 23:3432–3439. https://doi.org/10.1007/s00330-013-2950-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D et al (2011) Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 33:974–979. https://doi.org/10.1002/jmri.22489

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guermazi A, Taouli B, Lynch JA, Peterfy CG (2004) Imaging of bone erosion in rheumatoid arthritis. Semin Musculoskelet Radiol 08:269–285. https://doi.org/10.1055/s-2004-861575

    Article  Google Scholar 

  14. Østergaard M, Pedersen SJ, Døhn UM (2008) Imaging in rheumatoid arthritis—status and recent advances for magnetic resonance imaging, ultrasonography, computed tomography and conventional radiography. Best Pract Res Clin Rheumatol 22:1019–1044. https://doi.org/10.1016/j.berh.2008.09.014

    Article  PubMed  Google Scholar 

  15. Bøyesen P, Haavardsholm EA, Østergaard M, van der Heijde D, Sesseng S, Kvien TK (2011) MRI in early rheumatoid arthritis: synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression. Ann Rheum Dis 70:428–433. https://doi.org/10.1136/ard.2009.123950

    Article  PubMed  Google Scholar 

  16. Li X, Yu A, Virayavanich W, Noworolski SM, Link TM, Imboden J (2012) Quantitative characterization of bone marrow edema pattern in rheumatoid arthritis using 3 tesla MRI. J Magn Reson Imaging 35:211–217. https://doi.org/10.1002/jmri.22803

    Article  CAS  PubMed  Google Scholar 

  17. Nieuwenhuis WP, van Steenbergen HW, Stomp W, Stijnen T, Huizinga TWJ, Bloem JL et al (2016) The course of bone marrow edema in early undifferentiated and rheumatoid arthritis: a longitudinal MRI study on bone level. Arthritis Rheumatol. https://doi.org/10.1002/art.39550

    Article  PubMed  Google Scholar 

  18. Lim W, Saifuddin A (2019) Review article: the differential diagnosis of bone marrow edema on wrist MRI. Skelet Radiol 48:1525–1539. https://doi.org/10.1007/s00256-019-03204-1

    Article  Google Scholar 

  19. Matthijssen XME, Wouters F, Boeters DM, Boer AC, Dakkak YJ, Niemantsverdriet E et al (2019) A search to the target tissue in which RA-specific inflammation starts: a detailed MRI study to improve identification of RA-specific features in the phase of clinically suspect arthralgia. Arthritis Res Ther 21:249. https://doi.org/10.1186/s13075-019-2002-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimizu T, Cruz A, Tanaka M, Mamoto K, Pedoia V, Burghardt AJ et al (2019) Structural changes over a short period are associated with functional assessments in rheumatoid arthritis. J Rheumatol 46:676–684. https://doi.org/10.3899/jrheum.180496

    Article  CAS  PubMed  Google Scholar 

  21. Østergaard M, Peterfy C, Conaghan P, McQueen F, Bird P, Ejbjerg B et al (2003) OMERACT rheumatoid arthritis magnetic resonance imaging studies. core set of mri acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 30:1385–1386

    PubMed  Google Scholar 

  22. Østergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I et al (2017) The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol 44:1706–1712. https://doi.org/10.3899/jrheum.161433

    Article  PubMed  Google Scholar 

  23. Conaghan PG, Østergaard M, Troum O, Bowes MA, Guillard G, Wilkinson B et al (2019) Very early MRI responses to therapy as a predictor of later radiographic progression in early rheumatoid arthritis. Arthritis Res Ther 21:214. https://doi.org/10.1186/s13075-019-2000-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barber QM, Yahya A (2015) Aspects of spinal bone marrow fat to water quantification with magnetic resonance spectroscopy at 3 T. Biomed Phys Eng Express 1:047001. https://doi.org/10.1088/2057-1976/1/4/047001

    Article  Google Scholar 

  25. Fram EK (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–208

    Article  CAS  Google Scholar 

  26. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB et al (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 26:347–359. https://doi.org/10.1016/j.mri.2007.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  Google Scholar 

  28. van Vucht N, Santiago R, Lottmann B, Pressney I, Harder D, Sheikh A et al (2019) The Dixon technique for MRI of the bone marrow. Skelet Radiol 48:1861–1874. https://doi.org/10.1007/s00256-019-03271-4

    Article  Google Scholar 

  29. Le Ster C, Gambarota G, Lasbleiz J, Guillin R, Decaux O, Saint-Jalmes H (2016) Breath-hold MR measurements of fat fraction, T1, and T2 * of water and fat in vertebral bone marrow: bone marrow fat fraction, T1 and T2 *. J Magn Reson Imaging 44:549–555. https://doi.org/10.1002/jmri.25205

    Article  PubMed  Google Scholar 

  30. Le Ster C, Lasbleiz J, Kannengiesser S, Guillin R, Gambarota G, Saint-Jalmes H (2017) A fast method for the quantification of fat fraction and relaxation times: comparison of five sites of bone marrow. Magn Reson Imaging 39:157–161. https://doi.org/10.1016/j.mri.2017.03.001

    Article  PubMed  Google Scholar 

  31. Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med 58:354–364. https://doi.org/10.1002/mrm.21301

    Article  PubMed  Google Scholar 

  32. Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB et al (2011) In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 24:784–790. https://doi.org/10.1002/nbm.1622

    Article  PubMed  Google Scholar 

  33. van Schie JJN, Lavini C, van Vliet LJ, Vos FM (2015) Feasibility of a fast method for B1-inhomogeneity correction for FSPGR sequences. Magn Reson Imaging 33:312–318. https://doi.org/10.1016/j.mri.2014.10.008

    Article  PubMed  Google Scholar 

  34. Wehrli FW (2013) Magnetic resonance of calcified tissues. J Magn Reson 229:35–48. https://doi.org/10.1016/j.jmr.2012.12.011

  35. Baudrexel S, Nöth U, Schüre J-R, Deichmann R (2017) T1 mapping with the variable flip angle technique: a simple correction for insufficient spoiling of transverse magnetization: correction for insufficient spoiling of transverse magnetization. Magn Reson Med. https://doi.org/10.1002/mrm.26979

    Article  PubMed  Google Scholar 

  36. Wang X, Hernando D, Reeder SB (2016) Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR spectrum: sensitivity of CSE-MRI to the choice of spectral model of fat. Magn Reson Med 75:845–851. https://doi.org/10.1002/mrm.25681

    Article  PubMed  Google Scholar 

  37. Hernando D, Kramer JH, Reeder SB (2013) Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation: R2* relaxometry using complex reconstruction. Magn Reson Med 70:1319–1331. https://doi.org/10.1002/mrm.24593

    Article  PubMed  PubMed Central  Google Scholar 

  38. Majumdar S, Thomasson D, Shimakawa A, Genant HK (1991) Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magn Reson Med 22:111–127. https://doi.org/10.1002/mrm.1910220112

    Article  CAS  PubMed  Google Scholar 

  39. Hwang SN (2020) Editorial for “practical approaches to bone marrow fat fraction quantification across magnetic resonance imaging platforms”. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27177

    Article  PubMed  Google Scholar 

  40. Vordenbäumen S, Schleich C, Lögters T, Sewerin P, Bleck E, Pauly T et al (2014) Dynamic contrast-enhanced magnetic resonance imaging of metacarpophalangeal joints reflects histological signs of synovitis in rheumatoid arthritis. Arthritis Res Ther 16:452. https://doi.org/10.1186/s13075-014-0452-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Møller-Bisgaard S, Hørslev-Petersen K, Ejbjerg BJ, Boesen M, Hetland ML, Christensen R et al (2015) Impact of a magnetic resonance imaging-guided treat-to-target strategy on disease activity and progression in patients with rheumatoid arthritis (the IMAGINE-RA trial): study protocol for a randomized controlled trial. Trials 16:178. https://doi.org/10.1186/s13063-015-0693-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Pedoia V, Heilmeier U, Ku E, Su F, Khanna S et al (2016) High-temporospatial-resolution dynamic contrast-enhanced (DCE) wrist MRI with variable-density pseudo-random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients: high temporospatial resolution DCE Wrist MRI. NMR Biomed 29:15–23. https://doi.org/10.1002/nbm.3443

    Article  CAS  PubMed  Google Scholar 

  43. Waterton JC, Ho M, Nordenmark LH, Jenkins M, DiCarlo J, Guillard G et al (2017) Repeatability and response to therapy of dynamic contrast-enhanced magnetic resonance imaging biomarkers in rheumatoid arthritis in a large multicentre trial setting. Eur Radiol 27:3662–3668. https://doi.org/10.1007/s00330-017-4736-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lugauer F, Nickel D, Wetzl J, Kiefer B, Hornegger J, Maier A (2017) Accelerating multi-echo water-fat MRI with a joint locally low-rank and spatial sparsity-promoting reconstruction. Magn Reson Mater Phy 30:189–202. https://doi.org/10.1007/s10334-016-0595-7

    Article  CAS  Google Scholar 

  45. Delattre BMA, Boudabbous S, Hansen C, Neroladaki A, Hachulla A-L, Vargas MI (2020) Compressed sensing MRI of different organs: Ready for clinical daily practice? Eur Radiol 30:308–319. https://doi.org/10.1007/s00330-019-06319-0

    Article  PubMed  Google Scholar 

  46. Morgan EM, Munro JE, Horonjeff J, Horgan B, Shea B, Feldman BM et al (2019) Establishing an updated core domain set for studies in juvenile idiopathic arthritis: a report from the OMERACT 2018 JIA workshop. J Rheumatol 46:1006–1013. https://doi.org/10.3899/jrheum.181088

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would thank the radiographers and technicians of Rennes University Hospital (Hôpital Sud) for their kind support. The volunteers were included in the OSS-IRM study, supported by the University Hospital of Rennes and the University of Rennes. The authors would like to thank Lauren Langford and John Delayre for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Marage.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The acquisitions performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee (Comité Protection des Personnes Ouest V, Rennes, France) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marage, L., Lasbleiz, J., Fondin, M. et al. Voxel-based mapping of five MR biomarkers in the wrist bone marrow. Magn Reson Mater Phy 34, 729–740 (2021). https://doi.org/10.1007/s10334-020-00901-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00901-0

Keywords

Navigation