Skip to main content

Advertisement

Log in

Does PET/MR in human brain imaging provide optimal co-registration? A critical reflection

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The introduction of hybrid positron emission/magnetic resonance tomography (PET/MR) in diagnostic clinical imaging was a major step in the evolution of ever-more sophisticated imaging systems combining two strategies formerly regarded as technically incompatible in a single device. The advent of PET/MR opened up many new avenues in clinical and research environments, mainly by providing multi-modality images obtained during a single examination. Ideally, simultaneous data acquisition with hybrid PET/MR should warrant exact image co-registration of all multi-modality image volumes provided by both systems. This assumes that there is negligible mutual electronic, technical and logistical interference on the respective simultaneous measurements. Recently, such hybrid dedicated head and whole-body systems were successfully applied in an increasing number of cases. When employed for brain imaging, PET/MR has the potential to provide high-resolution multi-modality datasets. However, it also demands careful consideration of the multitude of features offered, as well as the limitations. There are open issues that have to be considered, such as the handling of patient motion during extended periods of data acquisition, optimized sampling of derived images to ease the visual interpretation and quantitative evaluation of co-registered images. This paper will briefly summarize the current status of PET/MR within the framework of developments for image co-registration and discuss current limitations and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pelizzari CA, Chen GTY, Halpern H et al (1989) Accurate three-dimensional registration of CT, PET and/or MR images of the brain. J Comput Assist Tomogr 13:20–26

    Article  PubMed  CAS  Google Scholar 

  2. Pietrzyk U, Herholz K, Heiss WD (1990) Three-dimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 14:51–59

    Article  PubMed  CAS  Google Scholar 

  3. Skalski J, Wahl RL, Meyer CR (2002) Comparison of mutual information-based warping accuracy for fusing body CT and PET by 2 methods: CT mapped onto PET emission scan versus CT mapped onto PET transmission scan. J Nucl Med 43:1184–1187

    PubMed  Google Scholar 

  4. Pietrzyk U (2001) Registration of MRI and PET images for clinical applications. In: Hajnal JV, Hill DLG, Hawkes DJ (eds) Medical image registration. CRC Press, Boca Raton, pp 199–216

    Chapter  Google Scholar 

  5. Beyer T, Townsend DW, Brun T (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  6. Schlemmer HP, Pichler B, Schmand M et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  7. Delso G, Fürst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MRI scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  8. Herzog H, Langen KJ, Weirich C et al (2011) High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin 50:74–82

    Article  PubMed  CAS  Google Scholar 

  9. Drzezga A, Souvatzoglou M, Eiber M et al (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855

    Article  PubMed  Google Scholar 

  10. Buchbender C, Heusner TA, Lauenstein TC et al (2012) Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 53:928–938

    Article  PubMed  Google Scholar 

  11. Zaidi H, Ojha N, Morich M et al (2011) Design and performance evaluation of a whole-body Ingenuity TF PET/MRI system. Phys Med Biol 56:3091–3106

    Article  PubMed  CAS  Google Scholar 

  12. Bergström M, Biethuis J, Eriksson L et al (1981) Head fixation device for reproducible position alignment in transmission CT and positron emission tomography. J Comput Assist Tomogr 5:136–141

    Article  PubMed  Google Scholar 

  13. Mazziotta JC, Phelps ME, Meadors AK et al (1982) Anatomical localization schemes for use in positron emission computed tomography using a specially designed headholder. J Comput Assist Tomogr 6:848–853

    Article  PubMed  CAS  Google Scholar 

  14. Fox PT, Perlmutter JS, Raichle ME (1985) A stereotactic method of anatomical localization for positron emission tomography. J Comput Assist Tomogr 9:141–153

    Article  PubMed  CAS  Google Scholar 

  15. Pietrzyk U, Herholz K, Fink G et al (1994) An interactive technique for three- dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35:2011–2018

    PubMed  CAS  Google Scholar 

  16. Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16:620–633

    Article  PubMed  CAS  Google Scholar 

  17. Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546

    Article  PubMed  CAS  Google Scholar 

  18. Wells WM III, Viola P, Atsumo H et al (1996) Multi-modal volume registration by maximization of mutual information. Med Imaging Anal 1:35–51

    Article  Google Scholar 

  19. Maes F, Collignon A, Vandermeulen D et al (1997) Multi-modalityity image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  PubMed  CAS  Google Scholar 

  20. Studholme C, Hill DLJ, Hawkes D (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24:25–35

    Article  PubMed  CAS  Google Scholar 

  21. Kuhl DE, Hale J, Eaton WL (1966) Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87:278–284

    PubMed  CAS  Google Scholar 

  22. Pietrzyk U, Scheidhauer K, Scharl A et al (1995) Presurgical visualization of primary breast carcinoma with PET emission and transmission imaging. J Nucl Med 36:1882–1884

    PubMed  CAS  Google Scholar 

  23. Beyer T, Antoch G, Mueller SP et al (2004) Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45:25S–35S

    PubMed  Google Scholar 

  24. Beyer T, Freudenberg LS, Czernin J et al (2011) The future of hybrid imaging—part 3: pET/MR, small-animal imaging and beyond. Insights Imaging 2:235–246

    Article  PubMed  Google Scholar 

  25. Cho ZH, Son YD, Kim HK et al (2008) A fusion PET/MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0T-MRI for the molecular-genetic imaging of the brain. Proteomics 8:1302–1323

    Article  PubMed  CAS  Google Scholar 

  26. Schmid D, Samarin A, Kuhn F et al (2011) Image registration accuracy of a sequential, trimodality PET/CT+MR imaging setup using dedicated patient transporter systems. http://m.rsna.org/rsna2011/program/event_display.cfm?em_id=11012910

  27. Catana C, Benner T, van der Kouwe A et al (2011) MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET Scanner. J Nucl Med 52:154–161

    Article  PubMed  Google Scholar 

  28. De Yong HWAM, van der Velden FHP, Kloet RW et al (2007) Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 52:1505–1526

    Article  Google Scholar 

  29. Heiss W-D (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl1):S105–S112

    Article  PubMed  Google Scholar 

  30. Haacke EM (1999) Magnetic resonance imaging. Physical principles and sequences design. Wiley, London, pp 570–590

    Google Scholar 

  31. Van der Kouwe AJW, Benner T, Dale AM (2006) Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 56:1019–1032

    Article  PubMed  Google Scholar 

  32. SPM. http://www.fil.ion.ucl.ac.uk/spm/

  33. Friston KJ, Ashburner J, Frith CD et al (1995) Spatial registration and normalization of images. Hum Brain Map 2:165–189

    Article  Google Scholar 

  34. Guerin B, Cho S, Chun SY et al (2011) Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging. Med Phys 38:3025–3038

    Article  PubMed  CAS  Google Scholar 

  35. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T (2012) Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal 16:252–264

    Article  PubMed  CAS  Google Scholar 

  36. Müller-Gärtner HW, Links JM, Prince JL et al (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 12:571–583

    Article  PubMed  Google Scholar 

  37. Meltzer CC, Kinahan PE, Greer PJ et al (1999) Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 40:2053–2065

    PubMed  CAS  Google Scholar 

  38. Rousset O, Rahmim A, Alavi A, Zaidi H (2007) Partial volume correction strategies in PET. PET Clin 2:235–249

    Article  Google Scholar 

  39. Wang H, Fei B (2012) An MR image-guided, voxel-based partial volume correction method for PET images. Med Phys 39:179–195

    Article  PubMed  Google Scholar 

  40. Ullisch MG, Scheins JJ, Weirich C et al (2012) MR-based PET Motion correction procedure for simultaneous MR-PET neuroimaging of human brain. PLoSone 7(11):e48149

    CAS  Google Scholar 

  41. Neuner I, Kaffanke JB, Langen KJ et al (2012) Multi-modality imaging utilising simultaneous MR-PET for human brain tumour assessment. Eur Radiol. doi:10.1007/s00330-012-2543-x

    PubMed  Google Scholar 

  42. Herzog H, van den Hoff J (2012) Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging 56:247–267

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all our colleagues at Forschungszentrum Jülich who contributed to results reported in this article and those obtained with the BrainPET/MRI installed at this centre. We are very grateful to Dr. D.R. Pillai for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Pietrzyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietrzyk, U., Herzog, H. Does PET/MR in human brain imaging provide optimal co-registration? A critical reflection. Magn Reson Mater Phy 26, 137–147 (2013). https://doi.org/10.1007/s10334-012-0359-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0359-y

Keywords

Navigation