Skip to main content
Log in

MR perfusion imaging by alternate slab width inversion recovery arterial spin labeling (AIRASL): a technique with higher signal-to-noise ratio at 3.0 T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

To propose a new arterial spin labeling (ASL) perfusion-imaging method (alternate slab width inversion recovery ASL: AIRASL) that takes advantage of the qualities of 3.0 T.

Materials and methods

AIRASL utilizes alternate slab width IR pulses for labeling blood to obtain a higher signal-to-noise ratio (SNR). Numerical simulations were used to evaluate perfusion signals. In vivo studies were performed to show the feasibility of AIRASL on five healthy subjects. We performed a statistical analysis of the differences in perfusion SNR measurements between flow-sensitive alternating inversion recovery (FAIR) and AIRASL.

Results

In signal simulation, the signal obtained by AIRASL at 3.0 and 1.5 T was 1.14 and 0.85%, respectively, whereas the signal obtained by FAIR at 3.0 and 1.5 T was 0.57 and 0.47%, respectively. In an in vivo study, the SNR of FAIR (3.0 T) and FAIR (1.5 T) were 1.73 ± 0.49 and 1.02 ± 0.20, respectively, whereas the SNRs of AIRASL (3.0 T) and AIRASL (1.5 T) were 3.93 ± 1.65 and 1.34 ± 0.31, respectively. SNR in AIRASL at 3.0 T was significantly greater than that in FAIR at 3.0 T.

Conclusion

The most significant potential advantage of AIRASL is its high SNR, which takes advantage of the qualities of 3.0 T. This sequence can be easily applied in the clinical setting and will enable ASL to become more relevant for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31(3):680–687

    Article  PubMed  CAS  Google Scholar 

  2. Chen J, Licht DJ, Smith SE et al (2009) Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging 29(2):282–290

    Article  PubMed  Google Scholar 

  3. Garcia DM, Duhamel G, Alsop DC (2004) The efficiency of background suppression in arterial spin labeling. In: Proceedings of the 12th annual meeting of ISMRM, Kyoto, p 1360

  4. Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69

    Article  PubMed  CAS  Google Scholar 

  5. Kim MJ, Kim HS, Kim JH et al (2008) Diagnostic accuracy and interobserver variability of pulsed arterial spin labeling for glioma grading. Acta Radiol 49(4):450–457

    Article  PubMed  CAS  Google Scholar 

  6. Kimura H, Kado H, Koshimoto Y et al (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 22(2):189–198

    Article  PubMed  Google Scholar 

  7. Kimura H, Takeuchi H, Koshimoto Y et al (2006) Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol 27(1):85–93

    PubMed  CAS  Google Scholar 

  8. Moffat BA, Chenevert TL, Hall DE et al (2005) Continuous arterial spin labeling using a train of adiabatic inversion pulses. J Magn Reson Imaging 21(3):290–296

    Article  PubMed  Google Scholar 

  9. Mildner T, Trampel R, Moller HE et al (2003) Functional perfusion imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3 T. Magn Reson Med 49(5):791–795

    Article  PubMed  Google Scholar 

  10. Restom K, Behzadi Y, Liu TT (2006) Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31(3):1104–1115

    Article  PubMed  Google Scholar 

  11. St Lawrence KS, Frank JA, Bandettini PA et al (2005) Noise reduction in multi-slice arterial spin tagging imaging. Magn Reson Med 53(3):735–738

    Article  PubMed  CAS  Google Scholar 

  12. Talagala SL, Ye FQ, Ledden PJ et al (2004) Whole-brain 3D perfusion MRI at 3.0T using CASL with a separate labeling coil. Magn Reson Med 52(1):131–140

    Article  PubMed  Google Scholar 

  13. Wang J, Licht DJ (2006) Pediatric perfusion MR imaging using arterial spin labeling. Neuroimaging Clin N Am 16(3):149–167, ix

    Google Scholar 

  14. Wolf RL, Detre JA (2007) Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 4(3):346–359

    Article  PubMed  Google Scholar 

  15. Wong EC, Luh WM, Liu TT (2000) Turbo ASL: arterial spin labeling with higher SNR and temporal resolution. Magn Reson Med 44(4):511–515

    Article  PubMed  CAS  Google Scholar 

  16. Ye FQ, Frank JA, Weinberger DR et al (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44(1):92–100

    Article  PubMed  CAS  Google Scholar 

  17. Ye FQ, Mattay VS, Jezzard P et al (1997) Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 37(2):226–235

    Article  PubMed  CAS  Google Scholar 

  18. Calamante F, Williams SR, van Bruggen N et al (1996) A model for quantification of perfusion in pulsed labelling techniques. NMR Biomed 9(2):79–83

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuhiro Fujiwara or Hirohiko Kimura.

Appendix

Appendix

To derive an expression for the signal difference between control and labeled spins, we begin with the Bloch equation for longitudinal magnetization of brain tissue water corrected for the effects of arterial and venous flow:

$$ \frac{{{\text{d}}M(t)}}{{{\text{d}}t}} = - \frac{{M_{0} - M(t)}}{{T_{1} }} + fM_{a} \left( t \right) - \frac{f}{\lambda }M\left( t \right) . $$
(5)

Because the perfusion signal is obtained by subtracting two images acquired with arterial spin tagging states but with identical blood flow, the signal from each compartment is defined as the difference in magnetization in i-th interval between the labeled and control scans:

$$ {\text{ASL signal}}: \Updelta S_{i} (t) = M^{\text{control}} \left( t \right) - M^{\text{label}} \left( t \right). $$
(6)

The difference in magnetization of arterial blood between control and labeled states can be expressed as follows:

$$ \frac{{(M^{\text{control}} \left( t \right) - M^{\text{label}} \left( t \right))}}{{{\text{d}}t}} = - \frac{{\left( {M^{\text{control}} \left( t \right) - M^{\text{label}} \left( t \right)} \right)}}{{T_{1} }} + f\left( {M_{a}^{\text{control}} \left( t \right) - M_{a}^{\text{label}} \left( t \right)} \right) - \frac{f}{\lambda }\left( {M^{\text{control}} \left( t \right) - M^{\text{label}} \left( t \right)} \right). $$
(7)

First, z-magnetization of the 1st period is considered as:

$$ \frac{{\Updelta {\text{S}}_{1} \left( t \right)}}{{{\text{d}}t}} = - \frac{{\Updelta S_{1} \left( t \right)}}{{T_{1} }} + f\left( {M_{a}^{\text{control}} \left( t \right) - M_{a}^{\text{label}} \left( t \right)} \right) - \frac{f}{\lambda }\Updelta S_{1} \left( t \right), $$
(8)

where T 1app is given by

$$ \frac{1}{{T_{{1{\text{app}}}} }} = \frac{1}{{T_{1} }} + \frac{f}{\lambda } , $$
(9)

and the inflowing spins in acquisition of the 1st interval are written as follows:

$$ M_{a}^{\text{control}} \left( t \right) = M_{a,1}^{0} , $$
(10)
$$ M_{a}^{\text{label}} \left( t \right) = M_{a,1}^{0} \left( {1 - 2\alpha e^{{ - (\frac{t}{{T_{1a} }} + \frac{{\delta_{a} }}{{T_{1a} }})}} } \right)\quad (\delta_{a} \le t < {\text{IT}}), $$
(11)

where δ a represents transit time (delay time), and we assume that the label duration (labeling slab width/flow velocity) equals IT. Then, by substituting Eqs. 9, 10, 11 into Eq. 8, we obtain the following:

$$ \frac{{\Updelta S_{1} \left( t \right)}}{{{\text{d}}t}} + \frac{{\Updelta S_{1} \left( t \right)}}{{T_{{1{\text{app}}}} }} = {\text{f}}\left( {M_{a}^{0} - M_{a,1}^{0} \left( {1 - 2\alpha {\text{e}}^{{ - \left( {\frac{\text{t}}{{{\text{T}}_{1a} }} + \frac{{\delta_{a} }}{{{\text{T}}_{1a} }}} \right)}} } \right)} \right), $$
(12)

where \( M_{a}^{0} = \frac{{M_{0} }}{\lambda } \) by substituting this equation into Eq. 12, we obtain the following:

$$ \frac{{\Updelta S_{1} \left( t \right)}}{{{\text{d}}t}} + \frac{{\Updelta S_{1} \left( t \right)}}{{T_{{1{\text{app}}}} }} = \frac{{2\alpha fM_{0} }}{\lambda } \cdot {\text{e}}^{{ - \left( {\frac{\text{t}}{{T_{1a} }} + \frac{{\delta_{a} }}{{T_{1a} }}} \right)}} \quad ( \delta_{a} < t). $$
(13)

Then, the general solution is as follows:

$$ \Updelta S_{1} (t) = {\text{e}}^{{ - \frac{{{\text{t}} - \delta_{a} }}{{T_{{1{\text{app}}}} }}}} \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot {\text{e}}^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} \cdot {\text{e}}^{{\left( {\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}} \right)\left( {{\text{t}} - \delta_{a} } \right)}} + M + C_{1} } \right], $$
(14)

where M and C 1 represent initial value of z-magnetization and arbitrary constant in the 1st period, respectively.

where S 1(t = 0) equal 0, then:

$$ C_{1} = - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} $$
(15)

when we substitute C 1 into the general solution, we obtain the following:

$$ \Updelta S_{1} (t) = e^{{ - \frac{{{\text{t}} - \delta_{a} }}{{T_{{1{\text{app}}}} }}}} \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} \cdot {\text{e}}^{{\left( {\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}} \right)\left( {{\text{t}} - \delta_{a} } \right)}} - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}}} \right]\quad (\delta_{a} < t \le {\text{IT)}} . $$
(16)

Next, we consider the signal change of z-magnetization in the 2nd interval. If we define the ASL signal with the following equation:

$$ {\text{ASL}}\; {\text{signal}}: \Updelta S_{2} (t) = M_{a}^{\text{label}} \left( t \right) - M_{a}^{\text{control}} \left( t \right) $$
(17)

we have to note that the signal is obtained from the opposite subtraction between control and labeled states. Then, we can derive the following equation:

$$ \frac{{\Updelta S_{2} \left( t \right)}}{{{\text{d}}t}} + \frac{{\Updelta S_{2} \left( t \right)}}{{T_{{1{\text{app}}}} }} = {\text{f}}\left( {M_{a,2}^{0} - M_{a,2}^{0} \left( {1 - 2\alpha {\text{e}}^{{ - \left( {\frac{\text{t}}{{{\text{T}}_{1a} }} + \frac{{\delta_{a} }}{{{\text{T}}_{1a} }}} \right)}} } \right)} \right). $$
(18)

This formula is identical to the Eq. 12. The arterial inflow spins are also inverted in the 2nd period after 180 pulse as follows:

$$ M^{\text{control}} \left( t \right) = M_{a,2}^{0} \left( {1 - 2\alpha e^{{ - \frac{{t + {\text{IT}}}}{{T_{1a} }}}} } \right), M^{\text{label}} \left( t \right) = M_{a,2}^{0} \quad ({\text{IT}} < t \le 2{\text{IT}}). $$
(19)

Therefore, from the Eqs. 18 and 19, we can obtain the same differential equation as that seen for the 1st period.

$$ \frac{{\Updelta S_{2} \left( t \right)}}{{{\text{d}}t}} + \frac{{\Updelta S_{2} \left( t \right)}}{{T_{{1{\text{app}}}} }} = \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \left( {\frac{t}{{T_{1a} }} + \frac{{\delta_{a} }}{{T_{1a} }}} \right)}} \quad ({\text{IT}} < t \le 2{\text{IT}}). $$
(20)

Since the signal of end of the 1st period should be same as the initial signal of the 2nd period, the relationship: S 2(t = IT) = S 1(t = IT) is used.

$$ \Updelta S_{2} \left( {t - {\text{IT}}} \right) = \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} + S_{1} ({\text{IT}}) + C_{2} } \right] = S_{1} ({\text{IT}}) , $$
(21)

where C 2 represents the arbitrary constant in the 2nd period.

$$ C_{2} = - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}}. $$
(22)

Therefore,

$$ \Updelta S_{2} (t) = e^{{ - \frac{{t - \delta_{a} }}{{T_{1app} }}}} \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} \cdot e^{{\left( {\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}} \right)\left( {t - \delta_{a} } \right)}} + S_{1} ({\text{IT}}) - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}}} \right]. $$
(23)

The signal of the 3rd period can be considered with the same equation used the first period, but with a different start signal, where S 3(t = 2*IT) = S 2(t = 2*IT). Therefore,

$$ \Updelta S_{3} \left( {t - 2*{\text{IT}}} \right)|_{{t = 2*{\text{IT}}}} = \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} + S_{2} (2{\text{IT}}) + C_{3} } \right] = S_{2} (2{\text{IT}}), $$
(24)

where C3 represents the arbitrary constant in the 3rd period.

$$ C_{3} = - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} $$
(25)
$$ \Updelta S_{3} \left( t \right) = e^{{ - \frac{{t - \delta_{a} }}{{T_{{1{\text{app}}}} }}}} \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} \cdot e^{{\left( {\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}} \right)\left( {t - \delta_{a} } \right)}} + S_{2} \left( {2{\text{IT}}} \right) - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}}} \right] \quad (2{\text{IT}} < t \le 3{\text{IT}}). $$
(26)

Finally, we obtained the general solution of the AIRASL signal for i-th period as follows:

$$ \Updelta S_{i} \left( t \right) = e^{{ - \frac{{\left( {t - \delta_{a} - \left( {i - 1} \right)*{\text{IT}}} \right)}}{{T_{{1{\text{app}}}} }}}} \left[ {\frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}} \cdot e^{{\left( {\frac{1}{{T_{{ 1 {\text{app}}}} }} - \frac{1}{{T_{1a} }}} \right)\left( {t - \delta_{a} - \left( {i - 1} \right)*{\text{IT}}} \right)}} + S_{i - 1} \left( {\left( {i - 1} \right)*{\text{IT}} + \delta_{a} } \right) - \frac{{2\alpha fM_{0} }}{\lambda } \cdot e^{{ - \frac{{\delta_{a} }}{{T_{1a} }}}} \cdot \frac{1}{{\frac{1}{{T_{{1{\text{app}}}} }} - \frac{1}{{T_{1a} }}}}} \right] \quad (\delta_{a} < t). $$
(27)

If \( \delta_{a} \) = 0 and i = 1, this Eq. 27 is in agreement with the general solution of FAIR in a previous report [18].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, Y., Kimura, H., Miyati, T. et al. MR perfusion imaging by alternate slab width inversion recovery arterial spin labeling (AIRASL): a technique with higher signal-to-noise ratio at 3.0 T. Magn Reson Mater Phy 25, 103–111 (2012). https://doi.org/10.1007/s10334-011-0301-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0301-8

Keywords

Navigation