Skip to main content

Advertisement

Log in

Risk assessment of pesticides in paddy fields and the Safīdrūd River in Gīlān, Iran

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

Safīdrūd River is the longest river in northern Iran and serves 2.5 million people as a water resource for drinking, irrigation, pisciculture, and recreation. To evaluate the fate of pesticides in paddy fields on the Safīdrūd river bank and the Safīdrūd basin, a comprehensive model is developed in this paper to predict pesticide concentration. The model includes degradation and sorption to soil in paddy field and two-dimensional turbulent with degradation in river. To investigate the effects of pesticides on health, an inclusive risk assessment is defined by parameters such as the maximum annual prediction environmental concentration and mean prediction environmental concentration of pesticides in the intake zone of the Safīdrūd river for the Rasht water treatment plant. The risk quotient of all pesticides were higher than 1 (i.e., for Diazinon it was calculated to be 670) which indicate high risk in the Rasht potable water and can potentially cause various digestive cancers and other refractory and mutagenic diseases. As a result, it is necessary to codify the global planning of pesticide application in the paddy fields by the local government.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abolfazli F, Forghani A, Norouzi M (2012) Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. J Soil Sci Plant Nutr 12:349–362. doi:10.4067/S0718-95162012000200014

    Article  Google Scholar 

  • Annual report of the agricultural organization of Guilan Province (2012). The agricultural organization of Guilan Province

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J-C, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agricu Ecosyst Environ 123:247–260. doi:10.1016/j.agee.2007.07.011

    Article  Google Scholar 

  • Barcelo Culleres D et al. (2005) Opinion of the Scientific Panel on Plant health, Plant protection products and their Residues on a request from Commission related to the appropriate variability factor(s) to be used for acute dietary exposure assessment of pesticide residues in fruit and vegetables. DU Parma, Italy

  • Bhattacharjee S, Fakhruddin ANM, Chowdhury MAZ, Rahman MA, Alam MK (2012) Monitoring of selected pesticides residue levels in water samples of paddy fields and removal of cypermethrin and chlorpyrifos residues from water using rice bran. Bull Environ Contam Toxicol 89:348–353. doi:10.1007/s00128-012-0686-8

    Article  CAS  PubMed  Google Scholar 

  • Darik v and E , Faraji sina K (2000) Evaluation of river water quality in the White River studied zero sum assimilative capacity of the river. Paper presented at the 4th Conference and Exhibition of Environmental Engineering, Tehran

  • FAO (2015). Food and agriculture organization of the United Nations. http://faostat.fao.org

  • Gassmann M, Khodorkovsky M, Friedler E, Dubowski Y, Olsson O (2014) Uncertainty in the river export modelling of pesticides and transformation products. Environ Model Softw 51:35–44. doi:10.1016/j.envsoft.2013.09.021

    Article  Google Scholar 

  • Ghaheri MT, Vajari RN (2005) Review of toxin concentration of raw and treated water in guilan’s main water treatment plant. Water Environ J 67:14–21

    Google Scholar 

  • Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources. Springer, Netherlands

    Book  Google Scholar 

  • Heidari A (2010) Research strategic plan for pesticides. Iranian Research Institute of Plant Protection Press. (In Farsi)

  • Inao K, Kitamura Y (1999) Pesticide paddy field model (PADDY) for predicting pesticide concentrations in water and soil in paddy fields. Pestic Sci 55:38–46. doi:10.1002/(SICI)1096-9063(199901)55:1

    Article  CAS  Google Scholar 

  • Kaushik A, Sharma HR, Jain S, Dawra J, Kaushik CP (2010) Pesticide pollution of River Ghaggar in Haryana. India Environ Monit Assess 160:61–69. doi:10.1007/s10661-008-0657-z

    Article  CAS  PubMed  Google Scholar 

  • La N, Lamers M, Bannwarth M, Van Nguyen V, Streck T (2014) Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. doi:10.1007/s10333-014-0420-8

    Google Scholar 

  • Luo Y, Spurlock F, Gill S, Goh KS (2012) Modeling complexity in simulating pesticide fate in a rice paddy. Water Res 46:6300–6308. doi:10.1016/j.watres.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  • Maraqa MA (2001) Prediction of mass-transfer coefficient for solute transport in porous media. J Contam Hydrol 50:1–19. doi:10.1016/S0169-7722(01)00107-3

    Article  CAS  PubMed  Google Scholar 

  • Mattice JD, Skulman BW, Norman RJ, Gbur EE (2010) Analysis of river water for rice pesticides in eastern Arkansas from 2002 to 2008. J Soil Water Conserv 65:130–140. doi:10.2489/jswc.65.2.130

    Article  Google Scholar 

  • MED-Rice (2003) Guidance document for environmental risk assessments of active substances used on rice in the eu for annex i inclusion. Document prepared by Working Group on MED-Rice, EU Document Reference SANCO/1090/2000, Brussels

  • Miao Z, Padovani L, Riparbelli C, Ritter A, Trevisan M, Capri E (2003) Prediction of the environmental concentration of pesticide in paddy field and surrounding surface water bodies. Paddy Water Environ, 1:121–132. doi:10.1007/s10333-003-0021-4

    Article  Google Scholar 

  • Navarro A, Tauler R, Lacorte S, Barceló D (2010) Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J Hydrol 383:18–29. doi:10.1016/j.jhydrol.2009.06.039

    Article  CAS  Google Scholar 

  • Nguyen L, Lamers M, Nguyen V, Streck T (2013) Modelling the Fate of Pesticides in Paddy Rice-Fish Pond Farming Systems in Northern Vietnam. Pest Manag Sci 70:70–79

    PubMed  Google Scholar 

  • Palma G, Sánchez A, Olave Y, Encina F, Palma R, Barra R (2004) Pesticide levels in surface waters in an agricultural–forestry basin in Southern Chile. Chemosphere 57:763–770. doi:10.1016/j.chemosphere.2004.08.047

    Article  CAS  PubMed  Google Scholar 

  • Pour-Aziz M Optimum water consume in paddy fields. Ministry of Jihad-e-Agriculture. http://www.maj.ir/portal/Home/Default.aspx(2/7/2014). 2/7/2014

  • Rao P, Lakshmi CSR, Madhavi M, Swapna G, Sireesha A (2012) Butachlor dissipation in rice grown soil and its residues in grain Indian. J Weed Sci 44:84–87

    Google Scholar 

  • Razavipour T (2000) Hydrulic conductivity measurment in sefid-rud paddy fields. Islamic Azad University of Science and Research of Tehran

  • Sánchez-Bayo F, Baskaran S, Kennedy IR (2002) Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agricult Ecosyst Environ 91:37–57. doi:10.1016/S0167-8809(01)00258-4

    Article  Google Scholar 

  • Vidotto F, Ferrero A, Bertoia O, Gennari M, Cignetti A (2004) Dissipation of pretilachlor in paddy water and sediment. Agronomie 24:473–479. doi:10.1051/agro:2004043

    Article  CAS  Google Scholar 

  • Watanabe H, Takagi K (2000a) A simulation model for predicting pesticide concentrations in paddy water and surface soil II model validation and application. Environ Technol 21:1393–1404. doi:10.1080/09593332208618169

    Article  CAS  Google Scholar 

  • Watanabe H, Takagi K (2000b) A simulation model for predicting pesticide concentrations in paddy water and surface soil I. model development. Environ Technol 21:1379–1391. doi:10.1080/09593332208618167

    Article  CAS  Google Scholar 

  • Watanabe H, Takagi K, Vu SH (2006) Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model. Pest Manag Sci 62:20–29. doi:10.1002/ps.1115

    Article  CAS  PubMed  Google Scholar 

  • Yarshater E (2015) Encyclopædia Iranica, Columbia University. http://www.iranicaonline.org/articles/berenj-rice

  • Zhang R, Krzyszowska-Waitkus AJ, Vance GF, Qi J (2000) Pesticide transport in field soils. Adv Environ Res 4:57–65. doi:10.1016/S1093-0191(00)00009-5

    Article  Google Scholar 

  • Zhang Q-Q, Ying G-G, Chen Z-F, Liu Y-S, Liu W-R, Zhao J-L (2015) Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China. Sci Total Environ 520:39–48. doi:10.1016/j.scitotenv.2015.03.038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the assistance provided by the Rice Research Institute of Iran and Gīlān Agricultural Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Alighardashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alighardashi, A., Jalali, S., Bokaei, M.N. et al. Risk assessment of pesticides in paddy fields and the Safīdrūd River in Gīlān, Iran. Paddy Water Environ 15, 371–380 (2017). https://doi.org/10.1007/s10333-016-0555-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-016-0555-x

Keywords

Navigation