Skip to main content
Log in

Polymorphism of the 3′-UTR of the dopamine transporter gene (DAT) in New World monkeys

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

Genetic polymorphism in the 3′-untranslated region (3′-UTR) of the dopamine transporter (DAT) gene has been reported in both human and nonhuman primates, and the variable number of tandem repeats (VNTR) polymorphism has been related to several neurological and psychiatric disorders. As New World primates have been employed as models in biomedical research in these fields, in the present study we assessed genetic variation in the DAT gene in 25 robust capuchin monkeys (Sapajus spp.) and 39 common marmosets (Callithrix jacchus). Using enzymatic amplification followed by sequencing of amplified fragments, a VNTR polymorphism in the 3′-UTR region of the DAT gene was identified in both robust capuchins and common marmosets. The polymorphic tandem repeat of 40-bp basic units is similar to the human VNTR consensus sequence, with size variants composed of 9, 10, and 11 units in marmosets and 8, 9, 13, and 17 basic units in capuchins. We found behavioral evidence that carrying the 10-repeat DAT allele promotes flexible choice and maximization of foraging in marmosets tested in an operant choice paradigm. Moreover, in an intertemporal choice task, capuchins with longer repeat variants show less self-controlled choices than capuchins with at least one short repeat variant. Future research should focus on the relationship between these DAT polymorphisms, dopamine reuptake via the dopamine transporter, and behavioral and cognitive variation across New World monkey individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addessi E, Paglieri F, Focaroli V (2011) The ecological rationality of delay tolerance: insights from capuchin monkeys. Cognition 119:142–147

    Article  PubMed  Google Scholar 

  • Adriani W, Romani C, Manciocco A, Vitale A, Laviola G (2013) Individual differences in choice (in) flexibility but not impulsivity in the common marmoset: an automated, operant-behavior choice task. Behav Brain Res 256:554–563

    Article  PubMed  Google Scholar 

  • Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P (2001) The human dopamine transporter gene: gene organization, transcriptional regulation and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 11:449–455

    Article  CAS  PubMed  Google Scholar 

  • Blanchet PJ, Parent MT, Rompré PH, Lévesque D (2012) Relevance of animal models to human tardive dyskinesia. Behav Brain Funct 8:12. doi:10.1186/1744-9081-8-12

  • Boubli JP, Rylands AB, Farias I, Alfaro ME, Lynch Alfaro JW (2012) Cebus phylogenetic relationships: a preliminary reassessment of the diversity of the untufted capuchin monkeys. Am J Primatol 74:381–393

    Article  PubMed  Google Scholar 

  • Casey BJ, Epstein JN, Buhle J, Liston C, Davidson MC, Tonev ST, Spicer J, Niogi S, Millner AJ, Reiss A, Garrett A, Hinshaw SP, Greenhill LL, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Glover G (2007) Frontostriatal connectivity and its role in cognitive control in parent–child dyads with ADHD. Am J Psychiatry 164:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, Kaysen D, Krain AL, Ritchie GF, Rajapakse JC, Rapoport JL (1996) Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry 52:607–616

    Article  Google Scholar 

  • Clarke HF, Horst NK, Roberts AC (2015) Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making. Proc Natl Acad Sci USA 112:4176–4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Petrillo F, Micucci A, Gori E, Truppa V, Ariely D, Addessi E (2015a) Self-control depletion in tufted capuchin monkeys (Sapajus spp.): does delay of gratification rely on a limited resource? Front Psychol 6:1193. doi:10.3389/fpsyg.2015.01193

  • De Petrillo F, Ventricelli M, Ponsi G, Addessi E (2015b) Do tufted capuchin monkeys play the odds? Flexible risk preferences in Sapajus spp. Anim Cognit 18:119–130

    Article  Google Scholar 

  • Doucette-Stamm LA, Blakely DJ, Tian J, Mockus S, Mao JI (1995) Population genetic study of the human dopamine transporter gene (DAT1). Genet Epidemiol 12:303–308

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Colombo JA (1994) Long-term MPTP-treated monkeys are resistant to GM1 systemic therapy. Mol Chem Neuropathol 21:75–82

    Article  CAS  PubMed  Google Scholar 

  • Fuke S, Sasagawa N, Ishiura S (2005) Identification and characterization of the Hesr I/Hey I as a candidate trans-acting factor on gene expression through the 3′ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem 137:205–216

  • Ibáňez A, Blanco C, Perez de Castro I, Fernandez-Piqueras J, Sáiz-Ruiz J (2003) Genetics of pathological gambling. J Gambl Stud 19:11–22

    Article  PubMed  Google Scholar 

  • Inoue-Murayama M, Adachi S, Mishima N, Mitani H, Takenaka O, Terao K, Hayasaka I, Ito S, Murayama Y (2002) Variation of variable number of tandem repeat sequences in the 3′-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett 334:206–210

    Article  CAS  PubMed  Google Scholar 

  • Inoue-Murayama M, Hibino E, Iwatsuki H, Inoue E, Hong KW, Nishida T, Hayasaka I, Ito S, Murayama Y (2008) Interspecies and intraspecies variations in the serotonin transporter gene intron 3 VNTR in nonhuman primates. Primates 49:139–142

    Article  PubMed  Google Scholar 

  • Jareborg N, Birney E, Durbin R (1999) Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. Genome Res 9:815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang AM, Palmatier MA, Kidd KK (1999) Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3). Biol Psychiatry 46:151–160

    Article  CAS  PubMed  Google Scholar 

  • Lynch Alfaro JW, Boubli JP, Olson LE, Di Fiore A, Wilson B, Gutierrez-Espleta GA, Chiou KL, Schulte M, Neitzel S, Ross V, Schwochow D, Nguyen MTT, Farias I, Janson CH, Alfaro MJ (2012a) Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. J Biogeogr 39:272–288

    Article  Google Scholar 

  • Lynch Alfaro JW, Silva JDJr, Rylands AB (2012b) How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. Am J Primatol 74:273–286

    Article  Google Scholar 

  • Lynch Alfaro JW, Izar P, Ferreira R (2014) Capuchin monkey research priorities and urgent issues. Am J Primatol 76:705–720

    Article  PubMed  Google Scholar 

  • McHugh PC, Buckley DA (2015) The structure and function of the dopamine transporter and its role in CNS diseases. Vitam Horm 98:339–369

    Article  CAS  PubMed  Google Scholar 

  • Miller GM, De La Garza R 2nd, Novak MA, Madras BK (2001) Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: implications for association with attention deficit hyperactivity disorder and other neuropsychiatric disorders. Mol Psychiatry 6:50–58

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RJ, Howlett S, Earl L, White NG, McComb J, Schanfield MS, Briceno I, Papiha SS, Osipova L, Livshits G, Leonard WR, Crawford MH (2000) Distribution of the 3′ VNTR polymorphism in the human dopamine transporter gene in world populations. Hum Biol 72:295–304

    CAS  PubMed  Google Scholar 

  • Mitchell JF, Reynolds JH, Miller CT (2014) Active vision in marmosets: a model system for visual neuroscience. J Neurosci 34:1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mountain JL, Lin AA, Bowcock AM, Cavalli-Sforza L (1992) Evolution of modern humans: evidence from nuclear DNA polymorphisms. Philos Trans Biol Sci 337:159–165

    Article  CAS  Google Scholar 

  • Orsi A, Rees D, Andreini I, Venturella S, Cinelli S, Oberto G (2011) Overview of the marmoset as a model in nonclinical development of pharmaceutical products. Regul Toxicol Pharmacol 59:19–27

    Article  CAS  PubMed  Google Scholar 

  • Pascale E, Lucarelli M, Passarelli F, Butler RH, Tamellini A, Addessi E, Visalberghi E, Manciocco A, Vitale A, Laviola G (2012) Monomorphic region of the serotonin transporter promoter gene in New World monkeys. Am J Primatol 74:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Phillips KA, Sobieski CA, Gilbert VR, Chiappini-Williamson C, Sherwood CC, Strick PL (2010) The development of the basal ganglia in capuchin monkeys (Cebus apella). Brain Res 1329:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu A, Crocetti D, Adler M, Mahone EM, Denckla MB, Miller MI, Mostofsky SH (2009) Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am J Psychiatry 166:74–82

    Article  PubMed  Google Scholar 

  • Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH (2002) Behavioral and morphological comparison of two nonhuman primate models of Huntington’s disease. Neurosurgery 50:137–146

    PubMed  Google Scholar 

  • Schrago CG, Russo CA (2003) Timing the origin of New World monkeys. Mol Biol Evol 20:1620–1625

    Article  CAS  PubMed  Google Scholar 

  • Seehase S, Lauenstein HD, Schlumbohm C, Switalla S, Neuhaus V, Förster C, Fieguth HG, Pfennig O, Fuchs E, Kaup FJ, Bleyer M, Hohlfeld JM, Braun A, Sewald K, Knauf S (2012) LPS-induced lung inflammation in marmoset monkeys—an acute model for anti-inflammatory drug testing. PLoS One 7:e43709. doi:10.1371/journal.pone.0043709

  • Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R (2009) Structural development of the basal ganglia in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Psychiatry Res 172:220–225

    Article  PubMed  Google Scholar 

  • Stassart RM, Helms G, Garea-Rodríguez E, Nessler S, Hayardeny L, Wegner C, Schlumbohm C, Fuchs E, Brück W (2015) A new targeted model of experimental autoimmune encephalomyelitis in the common marmoset. Brain Pathol 26:452–464. doi:10.1111/bpa.12292

  • ‘t Hart BA, van Kooyk Y, Geurts JJ, Gran B (2015) The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Ann Clin Transl Neurol 2:581–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuno H, Tanaka I (2011) Decision making and risk attitude of the common marmoset in a gambling task. Neurosci Res 71:260–265

    Article  PubMed  Google Scholar 

  • Uchida S, Soshiroda K, Okita E, Kawai-Uchida M, Mori A, Jenner P, Kanda T (2015) The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol 747:160–165

    Article  CAS  PubMed  Google Scholar 

  • Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Gu HH (1999) Molecular cloning of the mouse dopamine transporter and pharmacological comparison with the human homologue. Gene 233:163–170

    Article  CAS  PubMed  Google Scholar 

  • Zoratto F, Sinclair E, Manciocco A, Vitale A, Laviola G, Adriani W (2014) Individual differences in gambling proneness among rats and common marmosets: an automated choice task. BioMed Res Int 927685. doi:10.1155/2014/927685

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esterina Pascale.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucarelli, M., Visalberghi, E., Adriani, W. et al. Polymorphism of the 3′-UTR of the dopamine transporter gene (DAT) in New World monkeys. Primates 58, 169–178 (2017). https://doi.org/10.1007/s10329-016-0560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-016-0560-0

Keywords

Navigation