Skip to main content
Log in

Proteomic analysis of differentially expressed proteins of Nicotiana benthamiana triggered by INF1 elicitin from Phytophthora infestans

  • Host Responses
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is considered to be durable, given that PAMPs are conserved in entire classes of microbes. Elicitins are structurally conserved extracellular proteins in oomycete species and are well characterized as having features of PAMPs. INF1 is an elicitin protein secreted by the late blight pathogen Phytophthora infestans. A cell surface receptor-like protein that mediates INF1 response was recently cloned in potato. In addition, some other genes are reportedly involved in INF1-triggered immune responses; however, the molecular mechanisms of INF1-triggered immunity remain poorly understood. Here, we used isobaric tags for relative and absolute quantification-based quantitative proteomics to analyze proteins involved in INF1-triggered cell death responses in Nicotiana benthamiana. Our approach identified 2964 proteins, 32 of which were significantly altered in abundance after INF1 induction. Two of eight selected upregulated proteins, namely, ATP dependent transporter and 60S ribosomal protein L15 were shown to be essential in INF1-triggered cell death responses by virus-induced gene silencing analysis. This study represents the first proteomic analysis of INF1-triggered cell death responses in plants and provides the basis for further work to elucidate molecular mechanisms into oomycete PTI in host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, Yoshioka H (2015) WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amelot N, Carrouche A, Danoun S, Bourque S, Haiech J, Pugin A, Ranjeva R, Grima-Pettenati J, Mazars C, Briere C (2011) Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner. Plant Cell Environ 34:149–161

    Article  CAS  PubMed  Google Scholar 

  • Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M, Hellens RP, Allan AC (2009) The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot 60:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appaji Rao N, Ambili M, Jala VR, Subramanya HS, Savithri HS (2003) Structure–function relationship in serine hydroxymethyltransferase. BBA-Proteins Proteom 1647:24–29

    Article  CAS  Google Scholar 

  • Armstrong MR, Whisson SC, Pritchard L, Bos JIB, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K, Cherevach I, Hamlin N, White B, Frasers A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PRJ (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci USA 102:7766–7771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JA, Vincent GG, Burden RS (1974) Diterpenes from Nicotiana glutinosa and their effect on fungal growth. J Gen Microbiol 85:57–64

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant–microbe biology research. Mol Plant-Microbe Interact 25:1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Borkowska M, Krzymowska M, Talarczyk A, Awan MF, Yakovleva L, Kleczkowski K, Wielgat B (1998) Transgenic potato plants expressing soybean ß-1, 3-endoglucanase gene exhibit an increased resistance to Phytophthora infestans. Z Naturforsch C 53:1012–1016

    CAS  PubMed  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nürnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultreys A, Trombik T, Drozak A, Boutry M (2009) Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens. Mol Plant Pathol 10:651–663

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD, Zipfel C, Rathjen JP, Kamoun S, Schornack S (2011) The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6:e16608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  Google Scholar 

  • Damasceno CMB, Bishop JG, Ripoll DR, Win J, Kamoun S, Rose JKC (2008) Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo-β-1,3-glucanases. Mol Plant-Microbe Interact 21:820–830

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Du J, Tian ZD, Liu J, Vleeshouwers VGAA, Shi XL, Xie CH (2013) Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep 40:957–967

    Article  CAS  PubMed  Google Scholar 

  • Du J, Rietman H, Vleeshouwers VGAA (2014) Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. J Vis Exp 83:e50971

    Google Scholar 

  • Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LCP, Zhou J, Liebrand TWH, Xie C, Govers F, Robatzek S, van der Vossen EAG, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2015a) Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants 1:15034

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Mpina MH, Birch PR, Bouwmeester K, Govers F (2015b) Phytophthora infestans RXLR effector AVR1 interacts with exocyst component sec5 to manipulate plant immunity. Plant Physiol 169:1975–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–289

    Article  CAS  PubMed  Google Scholar 

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goehre V, Jones AME, Sklenar J, Robatzek S, Weber APM (2012) Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol Plant Microbe Interact 25:1083–1092

    Article  CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256

    Article  PubMed  Google Scholar 

  • Gonorazky G, Ramirez L, Abd-El-Haliem A, Vossen JH, Lamattina L, Ten Have A, Joosten MHAJ, Laxalt AM (2014) The tomato phosphatidylinositol-phospholipase C2 (SlPLC2) is required for defense gene induction by the fungal elicitor xylanase. J Plant Physiol 171:959–965

    Article  CAS  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261

    Article  CAS  PubMed  Google Scholar 

  • Huitema E, Vleeshouwers VGAA, Cakir C, Kamoun S, Govers F (2005) Differences in intensity and specificity of hypersensitive response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. Mol Plant-Microbe Interact 18:183–193

    Article  CAS  PubMed  Google Scholar 

  • Jasiński M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette–type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang RHY, Tyler BM, Whisson SC, Hardham AR, Govers F (2006) Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol Biol Evol 23:338–351

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S, van West P, Vleeshouwers VGAA, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura Y, Hase S, Takenaka S, Kanayama Y, Yoshioka H, Kamoun S, Takahashi H (2009) INF1 elicitin activates jasmonic acid- and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. J Phytopathol 157:287–297

    Article  CAS  Google Scholar 

  • Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y (2012) A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol 169:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91:3403–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim YC, Choi D, Park JM (2013) Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing. Int J Mol Sci 14:22782–22795

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: Differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Mol Biol 62:127–140

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Z, Nie Y, Zhang L, Wang Z (2012) Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. Proteomics 12:2340–2354

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons R, Iwase A, Gansewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, Kazan K, Simpson GG, Shirasu K (2013) The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Sci Rep 3:2866

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Krüger DH, Terauchi R (2003) Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway CA (1997) Innate immunity: The virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  CAS  PubMed  Google Scholar 

  • Moreno JI, Martin R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    Article  CAS  PubMed  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50:903–914

    Article  CAS  PubMed  Google Scholar 

  • Peng KC, Wang CW, Wu CH, Huang CT, Liou RF (2015) Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol Plant-Microbe Interact 28:913–926

    Article  CAS  PubMed  Google Scholar 

  • Ponchet M, Panabieres F, Milat ML, Mikes V, Montillet JL, Suty L, Triantaphylides C, Tirilly Y, Blein JP (1999) Are elicitins cryptograms in plant–oomycete communications? Cell Mol Life Sci 56:1020–1047

    Article  CAS  PubMed  Google Scholar 

  • Qutob D, Huitema E, Gijzen M, Kamoun S (2003) Variation in structure and activity among elicitins from Phytophthora sojae. Mol Plant Pathol 4:119–124

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci 176:99–104

    Article  CAS  Google Scholar 

  • Shibata Y, Kawakita K, Takemoto D (2011) SGT1 and HSP90 are essential for age-related non-host resistance of Nicotiana benthamiana against the oomycete pathogen Phytophthora infestans. Physiol Mol Plant Pathol 75:120–128

    Article  CAS  Google Scholar 

  • Song J, Durrant WE, Wang S, Yan S, Tan E, Dong X (2011) DNA repair proteins are directly involved in regulation of gene expression during plant immune response. Cell Host Microbe 9:115–124

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  CAS  PubMed  Google Scholar 

  • Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Nasir KHB, Ito A, Kanzaki H, Matsumura H, Saitoh H, Fujisawa S, Kamoun S, Terauchi R (2007) A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant J 49:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol:135–162

  • Vossen JH, Abd-El-Haliem A, Fradin EF, Van Den Berg GCM, Ekengren SK, Meijer HJG, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma BPHJ, Joosten MHAJ (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239

    Article  CAS  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Xu QF, Cheng WS, Li SS, Li W, Zhang ZX, Xu YP, Zhou XP, Cai XZ (2012) Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses. J Exp Bot 63:2421–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91 phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JW, Wang JL, An LL, Doerge RW, Chen ZJ, Grau CR, Meng JL, Osborn TC (2007) Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta 227:13–24

    Article  CAS  PubMed  Google Scholar 

  • Zheng BB, Fang YN, Pan ZY, Sun L, Deng XX, Grosser JW, Guo WW (2014) iTRAQ-based quantitative proteomics analysis revealed alterations of carbohydrate metabolism pathways and mitochondrial proteins in a male sterile cybrid pommelo. J Proteome Res 13:2998–3015

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: Veni, vidi? Plant Physiol 154:551–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Science Foundation of China (31401436) and the Postdoctoral Science Foundation of China (2014M552054).

Author contributions

J. Du and X. Guo performed experiments; J. Du, L. Chen, C. Xie and J. Liu analyzed data; J. Du, C. Xie and J. Liu designed experiments and wrote the manuscript; J. Liu supervised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Guo, X., Chen, L. et al. Proteomic analysis of differentially expressed proteins of Nicotiana benthamiana triggered by INF1 elicitin from Phytophthora infestans . J Gen Plant Pathol 83, 66–77 (2017). https://doi.org/10.1007/s10327-017-0699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-017-0699-6

Keywords

Navigation