Skip to main content
Log in

Control of pollution emitted by foundries

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Research has made considerable attempt to decrease the emission of harmful gaseous pollutants to the atmosphere. This report reviews hazards due to foundry air pollution, measurement of pollution emission, pollution control devices and policies of pollution control. The pollutants discussed are polycyclic aromatic hydrocarbon, 1-hydroxypyrene, polychlorinated-p-dibenzodioxins and dibenzofurans and polychlorinated biphenyls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson L, Bryngelsson IL, Ohlson CG, Naystron P, Lilja BG, Westberg H (2008) Quartz and dust exposure in Swedish Iron foundries. J Occup Environ Hyg 6:9–18

    Article  Google Scholar 

  • Andres A, Ortiz I, Viguri JR, Irabien A (1995) Long-term behavior of toxic metals in stabilize steel foundry dusts. J Hazard Mater 40:31–42

    Article  Google Scholar 

  • Andres A, Ibfifiez R, Ortiz I, Irabien JA (1998) Experimental study of the waste binder anhydrite in the Solidification/stabilization process of heavy metal sludges. J Hazard Mater 57:155–168

    Article  CAS  Google Scholar 

  • Browne DR, Husni A, Risk MJ (1999) Airborne lead and particulate levels in Semarang, Indonesia and potential health impacts. Sci Total Environ 227:145–154

    Article  CAS  Google Scholar 

  • Biswas DK, Asthana SR, Rau VG (2001) Pollution management with techno-economic evaluation for coke based and cokeless cupolas. Appl Therm Eng 21:359–379

  • Cheng Yh, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS (2008) Measurement of ultrafine particle concentrations and size distribution in an iron foundry. J Hazard Mater 158:124–130

    Article  CAS  Google Scholar 

  • Choi KI, Lee DH, Osako M (2007) The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators. Chemosphere 66:1131–1137

    Article  CAS  Google Scholar 

  • Darcovkic KA, Jonasson CE, Capes (1997) Developments in the control of fine particulate air emission. Adv Powder Technol 2(3):179–215

    Article  Google Scholar 

  • Fatta D, Marneri M, Papadopoulos A, Savvides C, Mentzis A, Nikolaides L, Loizidou M (2004) Industrial pollution and control measures for a foundry in Cyprus. J Clean Prod 12:29–36

    Article  Google Scholar 

  • Fore S, Mbohwa CT (2010) Cleaner production for environmental conscious manufacturing in the foundry industry. J Eng Des Technol 8(3):314–333

    Google Scholar 

  • Frohling M, Rentz O (2010) A case study on raw material blending for the recycling of ferrous wastes in a blast furnace. J Clean Prod 18:161–173

    Article  Google Scholar 

  • Georgiadis P, Kyrtopoulos SA (1999) Molecular epidemiological approaches to the study of the genotoxic effects of urban air pollution. Mutat Res 428:91–98

    Article  CAS  Google Scholar 

  • Grochowalski A, Lassen C, Holtzer M, Sadowski M, Hudyma T (2007) Determination of PCDDs, PCDFs, PCBs and HCB Emissions from the metallurgical sector in Poland. Environ Sci Pollut Res 14(5):326–332

    Article  CAS  Google Scholar 

  • Holtzer M (2005) Implementation of IPPC directive in foundries. Metalurgija 44:141–146

    CAS  Google Scholar 

  • Huang H, Wang Y, Cannon FS (2009) Pore structure development of in-pyrolyzed coals pollution prevention in iron foundries. Fuel Process Technol 90:1183–1191

    Article  CAS  Google Scholar 

  • Huvinena M, Oksanen L, Kalliomaki K, Kalliomaki PL, Moilanen M (1997) Estimation of individual dust expose by magneto pneumography in stainless steel production. Sci Total Environ 199:133–139

    Article  Google Scholar 

  • Keshava N, Ong T (1999) Occupational exposure to genotoxic agents. Mutat Res 437:175–194

    Article  CAS  Google Scholar 

  • Krishnaraj R (2015) Foundry air pollution: hazards, measurements and control. In: Lichtfouse E (eds) CO2 sequestration, biofuels and depollution, environmental chemistry for a sustainable world, vol 5. Springer, Switzerland, p 335–357

  • Krishnaraj R, Sakthivel M, Devadassan SR (2015) Performance efficiency of wet scrubber in induction furnace towards green revolution—a case study in Indian foundry. J Environ Res Dev 6:824–833

    Google Scholar 

  • Kuo HW, Chang CL, Lai JS, Lee FC, Chung BC, Chen CJ (1998) prevalence of and factors related to pneumoconiosis among foundry workers in central Taiwan. Sci Total Environ 222:133–139

    Article  CAS  Google Scholar 

  • Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated either cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133

    Article  CAS  Google Scholar 

  • Liang CDY, Yang KH, Lee JD, Hong GB (2010) The case study of furnace use and energy conservation in iron and steel industry. Energy 35:1665–1670

    Article  Google Scholar 

  • Lichtfouse E (ed) (2015) CO2 sequestration, biofuels and depollution. In: Environmental chemistry for a sustainable world, vol 5, XII, p 388

  • Lin MH, Liou SH, Chang CW, Huang IH, Strickland PT, Lai CH (2011) An engineering intervention resulting in improvement in lung function and change in urinary 8-hydroxydeoxyguanosine among foundry workers in Taiwan. Int Arch Occup Environ Health 84:175–183

    Article  CAS  Google Scholar 

  • Liu HH, Lin MH, Liu PC, Chan CI, Chen HL (2009) Health risk assessment by measuring plasma malondiadehyde (MDA) urinary hydroxydeoxyguanosine (8-OH-dG) and DNA strand breakage following metal exposure in foundry workers. J Hazard Mater 170:699–704

    Article  CAS  Google Scholar 

  • Liu HH, Lin MH, Chan CI, Chen HL (2010) Oxidative damage in foundry workers occupationally co-exposed to PAHs and metals. Int J Hyg Environ Health 213:93–98

    Article  CAS  Google Scholar 

  • Lv P, Zheng M, Liu G, Liu W, Xiao K (2011) Estimation and characterization of PCCD/Fs and dioxin-like PCBs from Chinese iron foundries. Chemosphere 82:759–763

    Article  CAS  Google Scholar 

  • Manuzon RB, Zhao LY, Keener HM (2007) A prototype acid spray scrubber for absorbing ammonia emissions from exhaust fans of animal buildings. Trans ASABE 50:1395–1407

    Article  CAS  Google Scholar 

  • Martinez A, Cabezas J (2009) Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration. Environ Eng Sci 26:883–890

    Article  CAS  Google Scholar 

  • Melendez A, Garcia E, Carnicer P, Pena E, Larrion M, Legarreta JA, Canas CG (2010) Fine ultrafine emission dynamics from a ferrous cupola furnace. J Air Manag Assoc 60(5):556–567

    CAS  Google Scholar 

  • Mirasgedis S, Hontou V, Georgepoulou E, Sarafidis Y, Gakis N, Lala DP, Loukatos A, Gargoulas N, Mentzis A, Economidis D, Triantafilopoulos T, Korizi K, Mavrotas G (2008) Environmental damage costs from airborne pollution of industrial activities in the greater Athens, Greece area and the resulting benefits from the introduction of BAT. Environ Impact Assess Rev 28:39–56

    Article  Google Scholar 

  • Myers T, Ibarreta A (2009) Investigation of the john foundry and CTA Acoustics dust explosions: similarities and differences. J Loss Prev Process Ind 22:740–745

    Article  Google Scholar 

  • Neto B, Kroeze C, Hordijk L, Costa C (2008) Modeling the environmental impact of an aluminum pressure die casting plant and options for control. Environ Model Softw 23:147–168

    Article  Google Scholar 

  • Neto B, Kroeze C, Hordijk L, Costa C (2009a) Inventory of pollution reduction options for an aluminum pressure die casting plant. Resour Conserv Recycl 53:309–320

    Article  Google Scholar 

  • Neto B, Kroeze C, Hordijk L, Costa C, Pulles T (2009b) Strategies to reduce the environment impact of an aluminum pressure die casting plant: a scenario analysis. J Environ Manage 90:815–830

    Article  CAS  Google Scholar 

  • Nie WX, Shea G, Yarnick TP (2005) Analysis estimates sulfuric acid emissions from FCCU wet gas scrubbers. Oil Gas J 103:62–64

    CAS  Google Scholar 

  • Niksa S, Fujiwara N (2005) The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations. J Air Waste Manag Assoc 55:970–977

    Article  CAS  Google Scholar 

  • Olasupo OA, Omotoyinbo JA (2009) Moulding properties of a Nigerian silica–clay mixture for foundry use. Appl Clay Sci 45:244–247

    Article  CAS  Google Scholar 

  • Pak SI, Chang KS (2006) Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray. J Hazard Mater 138:560–573

    Article  CAS  Google Scholar 

  • Pal P, Sethi G, Nath A, Swami S (2008) Towards cleaner technologies in small and micro enterprises: a process-based case study of foundry industry in India. J Clean Prod 16:1264–1274

    Article  Google Scholar 

  • Polizzi S, Ferrara M, Bugiani M, Barbero D, Baccolo T (2007) Aluminum and iron air pollution near and iron casting and aluminum foundry in Turin district Italy. J Inorg Biochem 101:1339–1343

    Article  CAS  Google Scholar 

  • Rabah MA (1999) Cost effectiveness of abatement options for emissions control in Egyptian iron foundries. Waste Manage 19:283–292

    Article  CAS  Google Scholar 

  • Rao RAK, Khan MA (2009) Biosorption of bivalent metal ions from aqueous solution by an agricultural waste: kinetics, thermodynamics and environmental effects. Colloids SurfA Physicochem Eng Asp 332:121–128

    Article  CAS  Google Scholar 

  • Sekhar H, Mahanti R (2006) Confluence of six sigma, simulation and environmental quality; an application in foundry industry. Manag Environ Qual Int J 17:170–183

    Article  Google Scholar 

  • Strobos JG, Friend JFC (2004) Zinc recovery from bag house dust generated at ferrochrome foundries. Hydrometallurgy 74:165–171

    Article  CAS  Google Scholar 

  • Subramanya MHB (2006) Energy intensity and economic performance small scale bricks and foundry clusters in India, does energy intensity matter. Energy Policy 34:489–497

    Article  Google Scholar 

  • Taha RA, Alnuaimi AS, Jabri AKS, Harthy AAS (2007) Evaluation of controlled low strength materials containing industrial by-products. Build Environ 42:3366–3372

    Article  Google Scholar 

  • Wang Y, Cannon FS, Salama M, Goudzwaaed J, Funrness JC (2007) Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environ Sci Technol 41:7922–7927

    Article  CAS  Google Scholar 

  • Wang Y, Cannon FS, Li X (2011) Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environ Sci Technol 45:8529–8535

    Article  CAS  Google Scholar 

  • Wu CH, Feng CT, Lo YS, Lin TY, JG LO (2004) Determination of volatile organic compounds in workplace air by multi sorbent adsorption/thermal desorption. Chemosphere 56:71–80

    Article  CAS  Google Scholar 

  • Xu ZY, Brown L, Pan GW, Li G, Feng YP, Guan DX, Liu TF, Liu LM, Chao RM, Sheng JH, Gao GC (1996) Life style, environmental pollution and lung cancer in cities of Liaoning in northeastern China. Lung Cancer 4:S149–S160

    Article  Google Scholar 

  • Yang HH, Lai SO, Hsieh LT, Hsueh HJ, Chi TW (2002) Profile of PAH emission from steel and iron industries. Chemosphere 48:1061–1074

    Article  CAS  Google Scholar 

  • Yu BW, Jin GZ, Moon YH, Kim MK, Kyoung JD, Chang YS (2006) Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S.Korea. Chemosphere 62:494–501

    Article  CAS  Google Scholar 

  • Zanetti MC, Fiore S (2002) Foundry processes: the recovery of green moulding sands for core operations. Resour Conserv Recycl 38:243–254

    Article  Google Scholar 

  • Zanetti M, Godio A (2006) Recovery of foundry sands and iron fractions from an industrial waste landfill. Resour Conserv Recycl 48:396–411

    Article  Google Scholar 

Download references

Acknowledgement

The work of first author is supported by DST Inspire Fellowship, Ministry of Science and Technology, Government of India-Ref. DST/Inspire Fellowship/IF 110324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krishnaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaraj, R. Control of pollution emitted by foundries. Environ Chem Lett 13, 149–156 (2015). https://doi.org/10.1007/s10311-015-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0500-z

Keywords

Navigation