Skip to main content
Log in

Ethyl carbamate in foods and beverages: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Food and beverages contain many toxic chemicals that raise health concerns. Ethyl carbamate (EC) or urethane is the ethyl ester of carbamic acid. It occurs at low level, from ng/L to mg/L, in many fermented foods and beverages. Ethyl carbamate is genotoxic and carcinogenic for a number of species such as mice, rats, hamsters and monkeys. It has been classified as a group 2A carcinogen, “probably carcinogenic to humans”, by the World Health Organization’s International Agency for Research on Cancer (IARC) in 2007. The benchmark dose lower limit of ethyl carbamate is 0.3 mg/kg bw per day and the mean intake of ethyl carbamate from food is approximately 15 ng/kg bw per day. Those levels were calculated for relevant foods including bread, fermented milk products and soy sauce. Alcoholic beverages were not included in this calculation. However, high levels of ethyl carbamate can be found in distillated spirits at concentrations ranging from 0.01 to 12 mg/L depending on to the origin of spirit. Alcoholic drinks should thus be considered as a source of ethyl carbamate. Ethyl carbamate is produced by several chemical mechanisms: first, from urea and various proteins like citrulline produced during the fermentation step and second from cyanide, and hydrocyanic acid, via ethyl carbamate precursors such as cyanate. A large panel of ethyl carbamate formation mechanisms is described from simple ethanolysis of urea in homogeneous liquid phase to photochemical oxidation of cyanide ion or complex heterogeneous gas/solid catalytic reactions. Determination of ethyl carbamate in foods and beverages involves various strategies according to the material, food or beverage, solid or liquid, and according to the concentration, from ng/L to mg/L. Usually, adapted extractive techniques and pre-concentration step are followed by analysis by gas chromatography coupled to mass spectrometry (GC–MS of GC–MS–MS). High performance liquid chromatography (HPLC) and semi-quantitative spectroscopic methods (infra-red) are also proposed as valuable alternatives to the classical but time-consuming GC–MS. Various preventing methods are developed and used in some cases at industrial scale to lower ethyl carbamate levels in food. Two types of preventing methods are described. First, adapted and optimised practices in all step of the chain of foods’ (or beverages) production lead in general to low ethyl carbamate level. Second, the abatement of ethyl carbamate precursors can be done by adapted enzymatic, physical chemical or chemical methods according to the natures of raw materials and conditions of their production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu SM, Alves A, Oliveira B, Herbert P (2005) Determination of ethyl carbamate in alcoholic beverages: an interlaboratory study to compare HPLC-FLD with GC–MS methods. Anal Bioanal Chem 382:498–503

    Article  CAS  Google Scholar 

  • Agbor-Egbe T, Lape Mbome I (2006) The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. J Food Compost Anal 19(4):354–363

    Article  CAS  Google Scholar 

  • Arena ME, Saguir FM, Manca de Nadra MC (1999) Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Int J Food Microbiol 52(3):155–161

    Article  CAS  Google Scholar 

  • Aresta M, Boscolo M, Franco DW (2001) Copper (II) catalysis in cyanate conversion into ethyl carbamate in spirits, and relevant reactions. J Agric Food Chem 49(6):2819–2824

    Article  CAS  Google Scholar 

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V (2007) Carcinogenicity of alcoholic beverages. Lancet Oncol 8(4):292–293

    Article  Google Scholar 

  • Balcerek M, Szopa JS (2006) Ethyl carbamate content in fruit distillates, Zywnosc, Nauka, Technologia. Jakosc 1(46):91–101

    Google Scholar 

  • Battaglia R, Conacher BS, Page BD (1990) Ethyl Carbamate in alcoholic beverages and foods: a review. Food Addit Contam 7(4):477–496

    Article  CAS  Google Scholar 

  • Beland FA, Benson WR, Mellick PW, Kovatch RM, Roberts DW, Fang J-L, Doerge DR (2005) Effect of ethanol on the tumoriginity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem technol 43:1–19

    Article  CAS  Google Scholar 

  • Bertrand A (1993) Le carbamate d’éthyle dans les eaux-de-vie de vin in Roger Cantagrel Editor, Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris pp 278–289

  • Boulton R (1993) The formation of ethyl carbamate from isocyanate and ethanol at elevated temperature, in Roger Cantagrel Editor, Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris p 479

  • Bruno SNF, Vaitsman DS, Kunigami CN, Brasil MG (2007) Influence of the distillation processes from Rio de Janeiro in the ethyl carbamate formation in Brazilian sugar cane spirits. Food Chem 104(4):1345–1352

    Article  CAS  Google Scholar 

  • Butzke CE, Bisson LF (1997) Ethyl Carbamate preventative action manual, US Food and Drug Administration, Center for food safety and Applied nutrition Ethyl carbamate preventative action manual. US, Food and Drug Administration, Washington

  • Canas BJ, Joe FL, Diachenko GW, Burns G (1994) Determination of ethyl carbamate in alcoholic beverages and soy sauce by gas chromatography with mass selective detection: Collaborative study. J AOAC Int 77:1530–1536

    CAS  Google Scholar 

  • Canas BJ, Diachenko GW, Nyman PJ (1997) Ethyl carbamate levels resulting from azodicarbonamide use in bread. Food Addit Contam 14(1):89–94

    Article  CAS  Google Scholar 

  • Cameán AM, Moreno I, López-Artíguez M, Repetto M, González AG (2001) Differentiation of Spanish brandies according to their metal content. Talanta 54(1):53–59

    Article  Google Scholar 

  • Cardoso AP, Mirione E, Ernesto M, Massaza F, Cliff J, Rezaul Haque Mand Bradbury JH (2005) Processing of cassava roots to remove cyanogens. J Food Compost Anal 18(5):451–460

    Article  CAS  Google Scholar 

  • Carley AF, Chinn M, Parkinson C (2003) Adsorption and reaction of CN + O = OCN on Cu(100) surface: a density functional theory study. Surf Sci 537:64–74

    Article  CAS  Google Scholar 

  • Cha SW, Gu HK, Lee KP, Lee MH, Han SS, Jeong TC (2000) Immunotoxicity of ethyl carbamate in female BALB/c mice: role of esterase and cytochrome P450. Toxicol Lett 115(3):173–181

    Article  CAS  Google Scholar 

  • Christoph N, Schmitt A, Hillenbrand K (1988) Ethylcarbamat in Obstbranntwein. Alkohol Ind 16:369–374

    Google Scholar 

  • Cipollone R, Ascenzi P, Frangipani E, Visca P (2006) Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63:942–949

    Article  CAS  Google Scholar 

  • Delledonne D, Rivetti F, Romano U (2001) Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General 221(1–2):241–251

    Article  CAS  Google Scholar 

  • Dennis MJ, Massey RC, Ginn R, Wiletts P, Crews C, Parker I (1997) The contribution of azodicarbonamide to ethyl carbamate formation in bread and beer. Food Addit Contam 14(1):101–108

    Article  CAS  Google Scholar 

  • Dennis MJ, Howarth N, Key PE, Massey RC (1986) Investigation of ethyl carbomate levels in some fermentated foods and alcoholic beverages. Food Addit Contam 6:383–389

    Article  Google Scholar 

  • Dennis MJ, Massey RC, Pointer M, Wiletts P (1990) Cooperative trial studies on the analysis of ethyl carbamate using capillary gas chromatography. J High Resolut Chromatogr 13(4):247–251

    Article  CAS  Google Scholar 

  • Dijkstra ZJ, Doornbos AR, Weyten H, Ernsting JM, Elsevier CJ, Keurentjes JTF (2007) Formation of carbamic acid in organic solvents and in supercritical carbon dioxide. J Supercrit Fluids 41(1):109–114

    Article  CAS  Google Scholar 

  • EFSA (2007) Ethyl carbamate and hydrocyanic acid in food and beverages. Scientific opinion of the panel on contaminants. EFSA J 551:1–44

    Google Scholar 

  • Eicher R, Bouchard E, Tremblay A (1999) Cow level sampling factors affecting analysis and interpretation of milk urea concentrations in 2 dairy herds. Can Vet J 40(7):487–492

    CAS  Google Scholar 

  • European Commission health and consumer protection directorate-general Directorate C, Scientific Opinions (2003) C2, Management of scientific committees: scientific co-operation and networks. Scientific Committee on Food SCF/CS/PM/GEN/M95 Final Opinion of the Scientific Committee on Food on the 23rd additional list of monomers and additives for food contact materials

  • Fidaleo M, Esti M, Moresi M (2006) Assessment of urea degradation rate in model wine solutions by acid urease from Lactobacillus fermentum. J Agric Food Chem 54:6226–6235

    Article  CAS  Google Scholar 

  • Fischer G, Geith J, Klapötke TM, Krumm B (2002) Synthesis, properties and dimerization study of isocyanic acid. Z Naturforsch 57b:19–24

    Google Scholar 

  • Food Standards, Australia New Zealand (2007), Ethyl Carbamate in Australian foods

  • Fox NJ, Stachowiak GW (2007) Vegetable oil-based lubricants—a review of oxidation. Tribology Int 40(7):1035–1046

    Article  CAS  Google Scholar 

  • Francis PS, Lewis SW, Lim KF (2002) Analytical methodology for the determination of urea: current practice and future trends. Trends Anal Chem 21(5):389–400

    Article  CAS  Google Scholar 

  • Gotor V (1999) Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases. Bioorg Med Chem 7(10):2189–2197

    Article  CAS  Google Scholar 

  • Guerain J, Leblond N (1993) Formation du carbamate d’éthyle et élimination de l’acide cyanhydrique des eaux-de-vie de fruits à noyaux in Roger Cantagrel Editor, Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris, pp 330–338

  • Ha MS, Kwon KS, Kim M, Hee RP, Soo JH, Lee H, Kim KM, Ko EJ, Ha SD, Bae DH (2006) Exposure assessment of ethyl carbamate in alcoholic beverages. J Microbiol Biotechnol 16(3):480–483

    CAS  Google Scholar 

  • Haddow A, Sexton W (1946) Influence of carbamic esters (urethanes) on experimental animal tumors. Nature 157:500–503

    Article  CAS  Google Scholar 

  • Hamlet CG, Jayaratne SM, Morrison C (2005) Application of positive ion chemical ionisation and tandem mass spetrometry cobined with gas chromatography to the trace level analysis of ethyl carbamate in bread. Rapid Commun Mass Spectrom 19(16):2235–2243

    Article  CAS  Google Scholar 

  • Hasnip S, Crews C, Potter N, Christy J, Chan D, Bondu T, Matthews W, Walters B, Patel K (2007) Survey of ethyl carbamate in fermented foods sold in the United Kingdom in 2004. Agric Food Chem 55:2755–2759

    Article  CAS  Google Scholar 

  • Herbert P, Santos L, Barros P, Alves (2002) A New HPLC method to determine ethil carbamate in alcoholic beverages using fluorescence detection. J Food Sci 67:1616–1620

  • Hesford F, Schneider K (2001) Validation of a simple method for the determination of ethyl carbamate in stone fruit brandies by GC–MS. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 92(3):250–259

    CAS  Google Scholar 

  • Himberg K, Sippola E, Riekkola M (1989) Multidimentional gas chromatography: state of the art A. J Microcolumn Sep 1(6):271–277

    Article  CAS  Google Scholar 

  • Hirakawa K, Midorikawa K, Oikawa S, Kawanishi (2003) Carcinogenic semicarbazide induces sequence-specific DNA damage through the generation of reactive oxygen species and the derived organic radicals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 536(1–2):91–101

  • Holland JR, Hosley H, Scharlau C, Carbone PP, Frei E, Brindley CO, Hall TC, Shnider BI, Gold GL, Lasagna L, Owens AH, Miller SP (1966) A controlled trial of urethane treatment in multiple myeloma. Blood 27(3):328–342

    CAS  Google Scholar 

  • RC IA (1974) Monographs on the evaluation of the carcinogenic risk of chemicals to man. Some antithyroid and related substances, nitrofurans and industrial chemicals, vol. 7. International Agency for Research on Cancer, Lyon, pp 111–140

    Google Scholar 

  • Jagerdeo E, Dugar S, Foster GD, Schenk H (2002) Analysis of ethil carbomate in wines using solid-phase extraction and multidimesional gas chromatography/ mass spectrometry. J Agric Food Chem 50:5797–5802

    Article  CAS  Google Scholar 

  • Joint FAO/WHO Food Standards Programme (2007) Codex committee on contaminants in foods, Beijing, China, 16–20 April 2007

  • Kim Y-KL, Koh E, Chung H-J, Kwon H (2000) Determination of ethyl carbamate in some fermented Korean foods and beverages. Food Addit Contam 17(6):469–475

    Article  CAS  Google Scholar 

  • Kitamoto K, Oda-Miyazaki K, Gomi K, Kumagai C (1993) Mutant isolation of non-urea producing sake yeast by positive selection. J Ferment Bioeng 75(5):359–363

    Article  CAS  Google Scholar 

  • Kitamoto K, Oda K, Gomi K, Takahashi K (1991) Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl Environ Microbiol 57(1):301–306

    CAS  Google Scholar 

  • Kogyo K H (2002). Mixed fruit juice alcoholic beverage production––including removing copper by treating with substance binding with copper or absorbing copper, Patent number: JP3310382-B2

  • Krock KA, Wilkins CL (1994) Resent advances in multidimentional gas chromatography. Trends Anal Chem 13(1):13–17

    Article  CAS  Google Scholar 

  • Lachenmeier DW (2005) Rapid screening for ethyl carbamate in stone-fruit spirits using FTIR spectroscopy and chemometrics. Anal Bioanal Chem 382(6):1407–1412

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Frank W, Kuballa T (2005a) Application of tandem mass spectrometry combined with gas chromatography to the routine analysis of ethyl carbomate in stone-fruit spirits. Rapid Commun Mass Spectrom 19:108–112

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Schehl B, Kuballa T, Fank W, Senn T (2005b) Retrospective trends and current status of ethyl carbamate in German stone-fruit spirits. Food Addit Contam: analysis, surveillance, evaluation control 22(5):397–405

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Nerlich U, Kuballa T (2006) Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry. J Chromatogr A 1108:116–120

    Article  CAS  Google Scholar 

  • Larsen JC (2006) Risk assessment of chemicals in European traditional foods. Trends Food Sci Technol 17(9):471–481

    Article  CAS  Google Scholar 

  • Laugel P, Bindler F(1993) Le carbamate d’éthyle dans les eaux-de-vie de fruits à noyaux, in Roger Cantagrel Editor, Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier, pp 290–295

  • Lurton L, Vidal JP, Estreguil S, Cantagrel R (1993) Comportement du carbamate d’éthyle lors de la distillation des vins pour l’obtention des eaux-de-vie de Cognac in Roger Cantagrel Editor, Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris, pp 344–349

  • Ma Y-P, Deng F-Q, Chen D-Z, Sun S-W (1995) Determination of ethyl carbamate in alcoholic beverages by capillary multi-dimensional gas chromatography with thermionic specific detection. J Chromatogr A 695:259–265

    Article  CAS  Google Scholar 

  • MacKenzie W, Clyne AH, MacDonald LS (1990) Ethyl carbamate formation in grain based spirits. Part II. The identification and determination of cyanide related species involved in ethyl carbamate formation in Scotch grain whisky. J Inst Brew 96(4):223–232

    Article  CAS  Google Scholar 

  • Madrera RR, Suárez VB (2008) Determination of ethyl carbamate in cider spirits by HPLC-FLD, Food Control (in press)

  • Matsudo T, Aoki T, Abe K, Fukuta N, Higuchi T, Sasaki M, Uchida K (1993) Determination of ethyl carbamate in soy sauce and its possible precursor. J Agric Food Chem 41(3):352–356

    Article  CAS  Google Scholar 

  • Mira de Orduña R, Liu S-Q, Patchett ML, Pilone GJ (2000) Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiol Lett 183(1):31–35

    Article  Google Scholar 

  • Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T (1999) Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J Biotechnol 68(2–3):227–236

    Article  CAS  Google Scholar 

  • Mulder PPJ, Beumer B, Van Rhijn JA (2007) The determination of biurea: a novel method to discriminate between nitrofurazone and azodicarbonamide use in food products. Anal Chim Acta 586(1–2):366–373

    Article  CAS  Google Scholar 

  • Muñoz F, Schuchmann MN, Olbrich G, von Sonntag C (2000) Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. J Chem Soc Perkin Trans 2:655–659

    Article  Google Scholar 

  • Nettleship A, Henshaw PS, Meyer HL (1943) Induction of pulmonary tumors in mice with ethyl carbamate. J Nat Cancer Inst 4:309–331

    CAS  Google Scholar 

  • Neves EA, Oliveira A, Fernandes AP, Nobrega JA (2007) Simple and efficient elimination of copper(II) in sugar-cane spirits. Food Chem 101(1):33–36

    Article  CAS  Google Scholar 

  • O’Brien J, Renwick AG, Constable A, Dybing E, Müller DJG, Schlatter J, Slob W, Tueting W, van Benthem J, Williams GM, Wolfreys A (2006) Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal. Food Chem Toxicol 44(10):1613–1635

    Article  Google Scholar 

  • Office fédéral de la santé publique Suisse (juin 2003) Rapport annuel 2002 sur la sûreté alimentaire

  • Ough CS (1976a) Ethylcarbamate in Fermented Beverages and Foods. I Naturally occuring ethylcarbamate. J Agric Food Chem 24(2):323–328

    Article  CAS  Google Scholar 

  • Ough CS (1976b) Ethylcarbamate in Fermented Beverages and Foods. II Possible formation of ethylcarbamate from diethyl dicarbonate addition to wine. J Agric Food Chem 24(2):328–331

    Article  CAS  Google Scholar 

  • Ough CS, Huang Z, An D, Stevens D (1991) Amino acid uptake by 4 commercial yeasts at different temperatures of growth and fermentation-effects of urea excretion and reabsorption. Am J od Oenology and Viticulture 42(1):26–40

    CAS  Google Scholar 

  • Park KK, Liem A, Stewart BC, Miller JA (1993) Vinyl carbamate epoxide, a major strong electrophilic, mutagenic and carcinogenic metabolite of vinyl carbamate and ethyl carbamate (urethane). Carcinogenesis 14:441–450

    Article  CAS  Google Scholar 

  • Park SK, Kim CT, Lee JW, Jhee OH, Om AS, Kang JS, Moon TW (2007) Analysis of ethyl carbamate in Korean soy sauce using high-performance liquid chromatography with fluorescence detection or tandem mass spectrometry and gas chromatography with mass spectrometry. Food Control 18(8):975–982

    Article  CAS  Google Scholar 

  • Paterson E, Haddon A, Thomas IA, Watkinson JM (1946) Leukemia treated with urethane compared to deep X-ray therapy, Lancet I:677–683

    Article  Google Scholar 

  • Paton GI, Palmer G, Kindness A, Campbell C, Glover LA, Killham K (1995) Use of luminescence-marked bacteria to assess copper bioavailability in malt whisky distillery effluent. Chemosphere 31(5):3217–3224

    Article  CAS  Google Scholar 

  • Pawliszyn J (1997) Solid phase micro-extraction theory and practice. Wiley, VCH, New York

    Google Scholar 

  • Pawliszyn J (2000) Theory of solid phase micro-extraction. J Chromatogr Sci 38:270–278

    Article  CAS  Google Scholar 

  • Pedraza-Avella JA, Acevedo-Peña P, Pedraza-Rosas JE (2008) Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach. Catal Today 133–135:611–618

    Article  Google Scholar 

  • Reaves GA, Berrow ML (1984) Total copper contents of Scottish soils. Euro J Soil Sci 35(4):583–592

    Article  CAS  Google Scholar 

  • Rezaul Haque M, Bradbury JH (2002) Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem 77(1):107–114

    Article  CAS  Google Scholar 

  • Riffikin HL, Wilson R, Howie D, Müller S (1989) Ethyl Carbamate formation in the production of pot still whisky. J Inst Brew 95:115–119

    Article  Google Scholar 

  • Sarla M, Pandit M, Tyagi DK, Kapoor JC (2004) Oxidation of cyanide in aqueous solution by chemical and photochemical process. J Hazard Mater 116(1–2):49–56

    Article  CAS  Google Scholar 

  • Saidu Y (2004) Physicochemical features of rhodanese: a review. Afr J Biotechnol 3(4):370–374

    CAS  Google Scholar 

  • Sakano K, Oikawa S, Hiraku Y, Kawanishi S (2002) Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radic Biol Med 33(5):703–714

    Article  CAS  Google Scholar 

  • Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424:131–142

    Article  CAS  Google Scholar 

  • Schaefer A, Küchler T, Simat TJ, Steinhart H (2003) Migration of lubricants from food packagings: Screening for lipid classes and quantitative estimation using normal-phase liquid chromatographic separation with evaporative light scattering detection. J Chromatogr A 1017(1–2):107–116

    Article  CAS  Google Scholar 

  • Schehl B, Lachenmeier D, Senn T, Heinisch JJ (2005) Effect of the stone content on the quality of plum and cherry spirits produced from mash fermentations with commercial and laboratory yeast strains. J Agric Food Chem 53:8230–8238

    Article  CAS  Google Scholar 

  • Schlatter J, Lutz WK (1990) The carcinogenic potential of ethyl carbamate (urethane): risk assessment at human dietary exposure levels. Food Chem Toxicol 28(3):205–211

    Article  CAS  Google Scholar 

  • Schliessmann Kellerei-chemie (2006) Kurzbeschreibung des CYANUREX® Verfahrens, stand 03/2007

  • Schomburg G (1995) Two-dimensional gas chromatography: principles, instrumentation, methods. J Chromatogr A 703:309–325

    Article  CAS  Google Scholar 

  • Sen NP, Seaman SW, Weber D (1992) A method for the determination of methyl carbamate and ethyl carbamate in wines. Food Addit Contam 9(2):149–160

    Article  CAS  Google Scholar 

  • Sen NP, Seaman SW, Boyle M, Weber D (1993) Methyl carbamate and ethyl carbamate in alcoholic beverages and other fermented foods. Food Chem 48(4):359–366

    Article  CAS  Google Scholar 

  • Shuguang L, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99(6):1509–1517

    Article  Google Scholar 

  • Stevens DF, Ough CS (1993) Ethyl carbamate formation: reaction of urea and citrulline with ethanol in wine under low to normal temperature conditions. Am J Enol Vitic 44:309–312

    CAS  Google Scholar 

  • De Stefani E, Boffetta P, Deneo-Pellegrini H, Ronco AL, Acosta G, Ferro G, Oreggia F, Leiva J (2007) The effect of smoking and drinking in oral and pharyngeal cancers: a case-control study in Uruguay. Cancer Lett 246(1–2):282–289

    Article  Google Scholar 

  • Stodolak B, Starzyńska A, Czyszczoń M, Żyła K (2007) The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chem 101(3):1041–1045

    Article  CAS  Google Scholar 

  • Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35(9):706–716

    Article  CAS  Google Scholar 

  • Uthurry CA, Varela F, Colomo B, Suarez Lepe JA, Lombardero J, Garcia del Hierro JR (2004) Ethyl carbamate concentrations of typical Spanish red wines. Food Chem 88:329–336

    Article  CAS  Google Scholar 

  • Uthurry CA, Suárez Lepe JA, Lombardero J, García Del Hierro JR (2006) Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem 9(2):262–270

    Article  Google Scholar 

  • University of California (2003) Irvine Guidelines for Selection and Use of Anesthetics and Sedatives

  • Vahl M (1993) A survey of ethyl carbamate in beverages, bread and acidified milks sold in Denmark. Food Addit Contam 10(5):585–592

    Article  CAS  Google Scholar 

  • Valero E, Mauricio JC, Milan MC, Ortega JM (1999) Changes in the urea content of wine under different fermentation and aging conditions by two Saccharomyces cerevisae races. Biotechnol Lett 21(6):555–559

    Article  CAS  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    Article  CAS  Google Scholar 

  • Wang D, Yang B, Zhai X, Zhou L (2007) Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Process Technol 88(8):807–812

    Article  CAS  Google Scholar 

  • Woo I-S, Kim I-H M, Yun U-J, Chung S-K, Rhee I-K, Choi S-W et al (2001) An improved method for determination of ethyl carbamate in Korean traditional rice wine. J Ind Microbiol Biotechnol 26:363–368

    Article  CAS  Google Scholar 

  • Wucherpfenning K (1992) Removing iron and copper ions out of beverages by means of selective complexing agents. Part 2. Factors affecting heavy-metal bonding to chelon resins. Deutsche Lebensmittel-Rundschau 88(10):313–317

    Google Scholar 

  • Yang H, Whitten JL (1998) Reaction and adsorption energetics of CN + O→OCN on nickel. J Mol Struct THEOCHEM 458(1–2):131–142

    Article  Google Scholar 

  • Zotta T, Ricciardi A, Parente E (2007) Enzymatic activities of lactic acid bacteria isolated from cornetto di matera sourdoughs. Int J Food Microbiol 115:165–172

    Article  CAS  Google Scholar 

  • Zietsman A, Viljoen M, van Vuuren H (2000) Preventing Ethyl Carbamate Formation in Wine, WineLand South Africa 12:83–85

  • Zimmerli B, Schlatter J (1991) Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutat Res 259(3–4):325–350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the supports of the Université Paul Verlaine-Metz, of the AREFE (station d’expérimentation fruitière) and of the Syndicat lorrain des bouilleurs et distillateurs d’eaux-de-vie de fruits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, J.V., Sharypov, V.I. Ethyl carbamate in foods and beverages: a review. Environ Chem Lett 7, 233–247 (2009). https://doi.org/10.1007/s10311-008-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-008-0168-8

Keywords

Navigation