Skip to main content
Log in

Die ILAE-Klassifikation der Hippocampussklerose von 2013 im klinisch pathologischen Alltag

The 2013 ILEA classification of hippocampal sclerosis in the clinicopathological routine

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Eine Hippocampussklerose (HS) ist durch subtotale Nervenzellverluste in verschiedenen anatomischen Sektoren des Hippocampus charakterisiert und praktisch immer mit einer medikamentös schwer behandelbaren Temporallappenepilepsie (TLE) vergesellschaftet. Die operative Entfernung des Hippocampus und angrenzender Strukturen des Schläfenlappens konnte in einer randomisierten klinischen Studie als erfolgreicher Therapieansatz bestätigt werden. Bei der histopathologischen Untersuchung finden sich jedoch unterschiedliche Verteilungsmuster hippokampaler Zellverluste. Wissenschaftliche Untersuchungen konnten diesen Mustern mit Einschränkung typische klinische Verläufe zuordnen. Die Internationale Liga gegen Epilepsie (ILAE) hat daher erstmalig 2013 eine internationale Konsensusklassifikation der HS vorgeschlagen. Wir erhoffen uns durch die Einteilung in 4 klinisch pathologische Subtypen eine bessere Aussagekraft zur Epilepsieentstehung und zu dem klinischen Verlauf. Es bleiben aber Fragen offen: 1. Warum führt ein Verlust erregender Nervenzellen im Hippocampus zu einer gesteigerten Erregbarkeit im Schläfenlappen? 2. Warum führen frühkindliche Schädigungen, wie beispielsweise Fieberkrämpfe, zur einseitigen Hippocampusschädigung? 3. Es erscheint paradox, dass die histopathologisch schwerste Form der HS mit subtotalen Nervenzelluntergängen in fast allen Hippocampusregionen den besten postoperativen Verlauf zeigt. 4. Es erscheint paradox, dass Patienten mit subtotalem Verlust von Pyramidenzellen in der CA1-Region und erhaltenem Körnerzellband präoperativ nur wenig messbare Gedächtnisstörungen aufweisen. Auf der Grundlage einer einheitlichen klinisch pathologischen Klassifikation soll uns die humane Hippocampusforschung zukünftig mehr Impulse zum Verständnis der Epilepsieentstehung und gleichsam Einblicke in Struktur und Biologie des Gedächtnisses liefern.

Abstract

Hippocampal sclerosis (HS) is characterized by segmental neuronal cell loss in different anatomical sectors oft he hippocampus and almost always associated with drug-resistant temporal lobe epilepsy. Surgical resection of the hippocampus and adjacent temporal lobe structures was proven to be the most successful treatment in a randomized clinical trial; however, histopathological examination of surgical specimens identified different patterns of hippocampal cell loss, which were associated with characteristic clinical presentations and postsurgical outcome. In 2013, the International League Against Epilepsy (ILAE) proposed an international consensus classification system of HS. The classification into four distinct clinicopathological subtypes may also help to promote further research efforts, as several intriguing questions are in need of clarification. 1. Why does loss of excitatory (pyramidal) neurons in the hippocampus lead to increased excitability of the temporal lobe? 2. Why do early childhood lesions, such as febrile seizures provoke unilateral damage of the hippocampus? 3. It seems also paradoxical that the histopathologically most severe form of HS (ILAE type 1) with neuronal cell loss in almost all hippocampal regions often has the best postsurgical outcome. 4. It seems paradoxical that patients with subtotal loss of pyramidal neurons in the CA1 region but an intact granular cell layer, preoperatively only have slight measurable memory impairment. Based on a uniform clinicopathological classification, it is hoped that research into the human hippocampus will provide more impulse in the undertstanding of the origins of epilepsy and simultaneously provide insights into the structure and biology of human memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Barba C, Rheims S, Minotti L et al (2016) Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain 139:444–451

    Article  PubMed  Google Scholar 

  2. Bien CG, Raabe AL, Schramm J et al (2013) Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009. J Neurol Neurosurg Psychiatr 84:54–61

    Article  PubMed  Google Scholar 

  3. Bien CG, Tiemeier H, Sassen R et al (2013) Rasmussen encephalitis: incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia 54:543–550

    Article  CAS  PubMed  Google Scholar 

  4. Blumcke I, Beck H, Nitsch R et al (1996) Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 55:329–341

    Article  CAS  PubMed  Google Scholar 

  5. Blumcke I, Coras R, Miyata H et al (2012) Defining clinico-neuropathological subtypes of mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Pathol 22:402–411

    Article  PubMed  Google Scholar 

  6. Blumcke I, Cross JH, Spreafico R (2013) The international consensus classification for hippocampal sclerosis: an important step towards accurate prognosis. Lancet Neurol 12:844–846

    Article  PubMed  Google Scholar 

  7. Blumcke I, Kistner I, Clusmann H et al (2009) Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol 117:535–544

    Article  PubMed  Google Scholar 

  8. Blumcke I, Pauli E, Clusmann H et al (2007) A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol 113:235–244

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blumcke I, Thom M, Aronica E et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–1329

    Article  PubMed  Google Scholar 

  10. Blumcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211

    PubMed  Google Scholar 

  11. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin

    Book  Google Scholar 

  12. Cameron HA, Mckay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  CAS  PubMed  Google Scholar 

  13. Cendes F, Lopes-Cendes I, Andermann E et al (1998) Familial temporal lobe epilepsy: a clinically heterogeneous syndrome. Neurology 50:554–557

    Article  CAS  PubMed  Google Scholar 

  14. Cendes F, Sakamoto AC, Spreafico R et al (2014) Epilepsies associated with hippocampal sclerosis. Acta Neuropathol 128:21–37

    Article  CAS  PubMed  Google Scholar 

  15. Cloppenborg T, May TW, Blumcke I et al (2016) Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatr. doi:10.1136/jnnp-2016-313831

    PubMed  Google Scholar 

  16. Coras R, Blumcke I (2015) Clinico-pathological subtypes of hippocampal sclerosis in temporal lobe epilepsy and their differential impact on memory impairment. Neuroscience 309:153–161

    Article  CAS  PubMed  Google Scholar 

  17. Coras R, De Boer OJ, Armstrong D et al (2012) Good interobserver and intraobserver agreement in the evaluation of the new ILAE classification of focal cortical dysplasias. Epilepsia 53:1341–1348

    Article  PubMed  Google Scholar 

  18. Coras R, Milesi G, Zucca I et al (2014) 7 T MRI features in control human hippocampus and hippocampal sclerosis: an ex vivo study with histologic correlations. Epilepsia 55:2003–2016

    Article  PubMed  Google Scholar 

  19. Coras R, Pauli E, Li J et al (2014) Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain 137:1945–1957

    Article  PubMed  Google Scholar 

  20. Coras R, Siebzehnrubl FA, Pauli E et al (2010) Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain 133:3359–3372

    Article  PubMed  Google Scholar 

  21. Crompton DE, Scheffer IE, Taylor I et al (2010) Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance. Brain 133:3221–3231

    Article  PubMed  Google Scholar 

  22. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  23. Fatterpekar GM, Naidich TP, Delman BN et al (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23:1313–1321

    PubMed  Google Scholar 

  24. Garbelli R, Milesi G, Medici V et al (2012) Blurring in patients with temporal lobe epilepsy: clinical, high-field imaging and ultrastructural study. Brain 135:2337–2349

    Article  PubMed  Google Scholar 

  25. Gould E, Reeves AJ, Fallah M et al (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heinemann U, Beck H, Dreier JP et al (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273–280

    CAS  PubMed  Google Scholar 

  27. Helmstaedter C, May TW, Von Lehe M et al (2014) Temporal lobe surgery in Germany from 1988 to 2008: diverse trends in etiological subgroups. Eur J Neurol 21:827–834

    Article  CAS  PubMed  Google Scholar 

  28. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  CAS  PubMed  Google Scholar 

  29. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  30. Leuner B, Mendolia-Loffredo S, Kozorovitskiy Y et al (2004) Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci 24:7477–7481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis DV, Shinnar S, Hesdorffer DC et al (2014) Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol 75:178–185

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lewis FT (1923) The significance of the term hippocampus. J Comp Neurol 35:213–230

    Article  Google Scholar 

  33. Li JM, Huang C, Yan B et al (2014) HHV-7 in adults with drug-resistant epilepsy: a pathological role in hippocampal sclerosis? J Clin Virol 61:387–392

    Article  PubMed  Google Scholar 

  34. Lorente De Nó R (1934) Studies on the structure of the cerebral cortex. II: Continuatiuon of the study of the Ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  35. Mani RB, Lohr JB, Jeste DV (1986) Hippocampal pyramidal cells and aging in the human: a quantitative study of neuronal loss in sectors CA1 to CA4. Exp Neurol 94:29–40

    Article  CAS  PubMed  Google Scholar 

  36. Mathern GW, Pretorius JK, Babb TL (1995) Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures. J Neurosurg 82:220–227

    Article  CAS  PubMed  Google Scholar 

  37. Mody I (1993) The molecular basis of kindling. Brain Pathol 3:395–403

    Article  CAS  PubMed  Google Scholar 

  38. Mody I, Otis TS, Staley KJ et al (1992) The balance between excitation and inhibition in dentate granule cells and its role in epilepsy. Epilepsy Res Suppl 9:331–339

    CAS  PubMed  Google Scholar 

  39. Nitsch R, Ohm TG (1995) Calretinin immunoreactive structures in the human hippocampal formation. J Comp Neurol 360:475–487

    Article  CAS  PubMed  Google Scholar 

  40. Pauli E, Hildebrandt M, Romstock J et al (2006) Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss. Neurology 67:1383–1389

    Article  CAS  PubMed  Google Scholar 

  41. Shors TJ, Miesegaes G, Beylin A et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  CAS  PubMed  Google Scholar 

  42. Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41–66

    Article  CAS  PubMed  Google Scholar 

  43. Spalding KL, Bergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thom M, Liagkouras I, Elliot KJ et al (2010) Reliability of patterns of hippocampal sclerosis as predictors of postsurgical outcome. Epilepsia 51:1801–1808

    Article  PubMed  Google Scholar 

  45. Toyoda I, Fujita S, Thamattoor AK et al (2015) Unit activity of hippocampal interneurons before spontaneous seizures in an animal model of temporal lobe epilepsy. J Neurosci 35:6600–6618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Strien NM, Cappaert NL, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10:272–282

    Article  PubMed  Google Scholar 

  47. Walther C (2002) Hippocampal terminology: concepts, misconceptions, origins. Endeavour 26:41–44

    Article  PubMed  Google Scholar 

  48. Wang D, Blumcke I, Gui Q et al (2013) Clinico-pathological investigations of Rasmussen encephalitis suggest multifocal disease progression and associated focal cortical dysplasia. Epileptic Disord 15:32–43

    CAS  PubMed  Google Scholar 

  49. Wiebe S, Blume WT, Girvin JP et al (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318

    Article  CAS  PubMed  Google Scholar 

  50. Wojtowicz AM, Fidzinski P, Heinemann U et al (2010) Beta-adrenergic receptor activation induces long-lasting potentiation in burst-spiking but not regular-spiking cells at CA1-subiculum synapses. Neuroscience 171:367–372

    Article  CAS  PubMed  Google Scholar 

  51. Wyler AR, Dohan FC, Schweitzer JB et al (1992) A grading system for mesial temporal pathology (hippocampal sclerosis) from anterior temporal lobectomy. J Epilepsy 5:220–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Coras.

Ethics declarations

Interessenkonflikt

M. Wiegner und R. Coras geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegner, M., Coras, R. Die ILAE-Klassifikation der Hippocampussklerose von 2013 im klinisch pathologischen Alltag. Z. Epileptol. 30, 186–191 (2017). https://doi.org/10.1007/s10309-017-0117-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-017-0117-2

Schlüsselwörter

Keywords

Navigation