Skip to main content
Log in

Effet du son de seigle chez le rat diabétique

Effect of bran of Secale to rats Wistar returned diabetic

  • Phytothérapie Expérimentale
  • Published:
Phytothérapie

Résumé

Le son représente l’enveloppe externe qui est une partie importante des grains du seigle, du fait de son intérêt nutritionnel et thérapeutique. L’étude portée sur la composition chimique montre que le son est une source riche en fibres avec un taux estimé à 39%. Ce travail porte sur la recherche de l’effet hypoglycémiant, hypolipidémiant et l’évaluation du pouvoir antioxydant après avoir administré un régime expérimental à base de son de seigle aux rats normaux et d’autres rendus diabétiques par la streptozotocine (STZ) pendant un mois d’expérimentation. Cet effet est également analysé chez les rats normaux et diabétiques soumis à un régime témoin. D’autres paramètres le poids corporel, le poids de fèces et la teneur en protéines totales, ont été évalués. Les résultats ont montré un effet hypoglycémiant net. De même on a noté l’influence du son de seigle (riche en fibres) sur la diminution de la concentration du cholestérol et des triglycérides. L’évaluation du statut antioxydant a montré des teneurs élevées des vitamines E et C et de l’ORAC chez nos lots expérimentaux et une diminution des marqueurs de la peroxydation lipidique et protéique.

Abstract

The bran of secale represents the external envelope, an important part of the grains of rye because of its nutritional and therapeutic interest. The study carried on the chemical composition of the bran of rye, watch which the bran is a source rich in fibers with an important rate estimated at 39%. This work concerns the research of the hypoglycemia effect, correct lipidic metabolic disorders and the evaluation of the antioxidant capacity, after having managed an experimental mode containing bran of rye to the normal rats and others returned diabetics during 1 month of experimentation. This effect is also analyzed in the normal rats and diabetics subjected to a pilot mode. Other parameters the body weight, the weight of deposit and the content of total proteins were evaluated. The research of the hypoglycemia effect of the bran of rye, led us to results showing an hypoglycemia effect. The same our results show as the influence of rye fibers on the disorders of the lipidic metabolism is significant in the reduction in the concentration of cholesterol and triglycerides. The evaluation of the antioxidant statute showed high contents of the vitamins E, C and total antioxidant capacity (ORAC) at our experimental rats and a reduction of a markers of lipidic and proteinic oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. OMS et FID (Organisation Mondiale de la Santé, fédération Internationale du Diabète) (2004). Il faut agir contre le diabète. Genève.

  2. Andreasen M, Landbo A (2001) Antioxidant effects of phenolic rye (Secale cereale L. extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J Agric Food Chem 49(8):4090–6

    Article  CAS  PubMed  Google Scholar 

  3. Association d’Aide aux diabétiques Tlemcen (2000) Sidi Cheker.Tlemcen

    Google Scholar 

  4. Baynes J (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–12.

    Article  CAS  PubMed  Google Scholar 

  5. Roberston R, Harmon J, Tamaka Y (2000) Glucose toxicity of betacell: cellularand molecular mechanisms:diabetes mellitus. A fundamental and clinical test. 2nd edition, Philadelphia 34:125–32

    Google Scholar 

  6. Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 342:481–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Charbonnel B et Cariou B(1997). Diabète non insulinodépendant: indications thérapeutiques. Méd Thér 3:103–11

    Google Scholar 

  8. Campos F, Logullo Waitzberg A, et al (2005) Diet and colorectal cancer: current evidence for etiology and prevention. Nutr Hosp 20(1):18–25

    CAS  PubMed  Google Scholar 

  9. Bazzano L, Song Y (2005) Dietary intake of whole and refined grain breakfast cereals and weight gain in men. Obes Res 13(11):1952–60

    Article  PubMed  Google Scholar 

  10. Slavin J (2003) Why whole grains are protective: biological mechanisms. Proc Nutr Soc 62(1):129–34

    Article  CAS  PubMed  Google Scholar 

  11. Riccardi G, Rivellese A (1991) Effects of dietary fiber and carbohydrate on glucose and lipoprotein metabolism in diabetic patients. Diabetes Care 14:1115–25

    Article  CAS  PubMed  Google Scholar 

  12. Geloën A, Roy P et Bukowecki L (1989) Regression of white adipose tissue in diabetic rats. American Physiological Society. Am J Physiol E547–53

    Google Scholar 

  13. Wolever et Jenkins (1993) Effect of dietary fiber and foods on carbohydrate Metabolism.In: Handbook of dietary fiber in human nutrition, 2nd édition. Spiller,Boca Raton, FL: CRC Press 111–152

    Google Scholar 

  14. Lecoq (1965) Manuel d’analyses alimentaires et d’expertises usuelles, Ed. Doin, Deren. Vol 1: 1965–2185.

    Google Scholar 

  15. Kjeldahl J (1883) Menue Methode Zur Bestimmung des stiktoffs in organischem Korpen.Z.Anal.Chem. Vol 22:366–82

    Article  Google Scholar 

  16. Henneberg W, Stohmann K (1860) Beitrage Zur Bergrundung einer rationellen Futterungder Wiederkauer.Fasc.1,Schwetschkeand Sohn edit. Braunschweig:145–7

    Google Scholar 

  17. Dubois M, Gilli Y, Hamilton P (1956) Colometric method for determination of sugars and related substance. Anal Chem J 28:350–6

    Article  CAS  Google Scholar 

  18. Audigie C, Figarelle J, Zons Zani F (1980) Manipulation d’analyses biochimiques.Ed. Doin. Paris, 88–97

    Google Scholar 

  19. Zaman Z, Fielden P, Frost P (1993) Similtaneous determination of vitamins A and E and carotenoids in plasma by reversed phase HPLC in elderly and younger subjects. Clin Chem 39:2229–34

    CAS  PubMed  Google Scholar 

  20. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–75

    CAS  PubMed  Google Scholar 

  21. Brustein M, Sholnick R (1970) Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 11:583–95

    Google Scholar 

  22. Fasce C (1982) Serum Cholesterol determined colorimetrically with enzyme. Clin.Chem 18:901.

    Google Scholar 

  23. Nourooz-Zadeh J, Ling K, Wolff S (1996) Low-density lipoprotein is the major carrier of lipid hydroperoxydes in plasma. Biochem J 313:781–6

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Levine R, Garland D, Oliver C, et al (1990) Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 186:464–8

    Article  CAS  Google Scholar 

  25. Roe J, Kuether (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivatives of dehydroascorbic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  26. Blache D, Prost M (1992).Free radical attack: Biological test for human resistance capability. In proceedings of the college Park of chemical Analysis Laboratory. Nasa, Washington: 82–98.

    Google Scholar 

  27. Godon B (1986). La composition physicochimique des céréales: un atout pour leur utilisation. In: Utilisation industrielle non alimentaire du blé et du mais. Symposium International. Paris. 5-34 Ed. Apria

    Google Scholar 

  28. Bonnefont-Rousselot D, Bastard J, Jaudon M, Delattre J (2000) Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab 26:163–76

    CAS  PubMed  Google Scholar 

  29. Giroud J, Tchobrotsky J, Slama G, Chast F (1988) Pharmacologie clinique: base de la thérapeutique. Expansion Scientifique Française 2e éd: 2311–12

    Google Scholar 

  30. West E, Simon O, Morrison E (1996) Streptozotocin alters pancreatic betacell responsiveness to glucose within six hours of injection into rats. West Indian Med J 45:60–2

    CAS  PubMed  Google Scholar 

  31. Juntunen K, Laaksonen D (2003) High-fiber rye bread and insulin secretion and sensitivity in healthy postmenopausal woman. Am J Clin Nutr 77(2):385–91

    CAS  PubMed  Google Scholar 

  32. Wursch P, Pi-Sunyer F (1997) The role of viscous soluble fiber in the metabolic control of diabetes.Areview with special emphasis on cereals rich in β-glucan. Diabetes Care 20:1774–80

    Article  CAS  PubMed  Google Scholar 

  33. Adiotomre J, Eastwood M, Edwards C, et al (1990) Dietery fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. Am J Clin Nutr 52:128–34

    CAS  PubMed  Google Scholar 

  34. Dunn F (1982) Hyperlipidemia and diabetes. Med Clin North Am 77: 1347–67.

    Google Scholar 

  35. Vergès B (2001) Insulinosensibilité et lipides. Diabetes Metab 27:223–7

    PubMed  Google Scholar 

  36. Chandalia M, Garg A, Lutijohann D, et al (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabets mellitus.N Engl J Med 342:1392–8

    Article  CAS  PubMed  Google Scholar 

  37. Behall K, Scholfield D, Hallfrisch J (1997) Effects of beta-glucan level in oat fiber extracts on blood lipids in men and women. J Am Coll Nutr 16:46–51

    Article  CAS  PubMed  Google Scholar 

  38. Jenkins D, Wollever T, Rao A, et al (1993) Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol. Engl J Med 329:21–6

    Article  CAS  Google Scholar 

  39. Gérald I, Schulman (2000) Cellular mechanisms of insulin resistance. J Clin Vestig 106:171–5

    Google Scholar 

  40. Paris M, Bernard-Kargar C, Berthault M, et al (2003) Specific and combined effects of insulin and glucose on functional pancreatic B-cell mass in vivo in adult rats. Endocrinology 144(6):2717–27

    Article  CAS  PubMed  Google Scholar 

  41. Joanne Slavin (2003) Why whole grains are protective: biological mechanisms. Proceedings of the nutrition society 62:129–34

    Article  Google Scholar 

  42. Yessoufou A, Soulimane N, Merzouk S, et al (2006) N-3 fatty acids modulate antioxidant status in diabetic rats and their macrosomic offspring. Internat J Obesity 1–12

    Google Scholar 

  43. Merzouk S, Hichami A, Sari A, et al (2004) Impaired oxidant / antioxidant status and LDL-Fatty Acid Composition Are Associated with increased susceptibility to Peroxidation of LDL in Diabetic Patients. Gen Physiol Biophys 23:387–99

    CAS  PubMed  Google Scholar 

  44. Ross AB, Kamal-Eldin A (2003) Cereal alkylresorcinols are absorbed by humans. J Nutr 133(7):2222–4

    CAS  PubMed  Google Scholar 

  45. Ross AB, Becker W (2005) Intake of alkylresorcinols from wheat and rye in the United Kingdom and Sweden. Br J Nutr 94(4):496–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Soualem-Mami.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soualem-Mami, Z., Brixi-Gormat, N., Djaziri, F.Z. et al. Effet du son de seigle chez le rat diabétique. Phytothérapie 13, 223–230 (2015). https://doi.org/10.1007/s10298-015-0933-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-0933-3

Mots clés

Keywords

Navigation