Skip to main content
Log in

Activité antimicrobienne des huiles essentielles de Pistacia atlantica Desf. de l’Algérie

Antimicrobial activity of the essential oils of Pistacia atlantica Desf. from Algeria

  • Article Original
  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

L’activité antimicrobienne des huiles essentielles de la résine de Pistacia atlantica Desf., récoltées dans trois stations de l’Ouest et le Sud-Ouest de l’Algérie, a été testée in vitro sur des isolats cliniques de sept souches bactériennes (Escherichia coli, Enterobacter cloacae, K. pneumoniae, Pseudomonas aeruginosa, Xanthomonas maltophila, Enterococcus feacalis et Staphylococcus aureus) et de trois souches fongiques (Candida albicans, Candida albicans ATCC20027 et Candida albicans ATCC20032). La détermination du pouvoir antibactérien et antifongique a été réalisée par la méthode de la diffusion sur gélose. Tous les extraits ont montré une forte activité antimicrobienne vis-à-vis des souches fongiques et bactériennes à des concentrations voisines de 105 µg/ml. Les huiles essentielles ont révélé un grand pouvoir antibactérien vis-à-vis de Staphylococcus aureus et Enterococcus feacalis avec des concentrations minimales inhibitrices (CMI) inférieurs à 10 µg/ml. Candida albicans a présenté une forte résistance aux huiles essentielles testées.

Abstract

Antimicrobial activity of essential oils of Pistacia atlantica Desf. resin, collected in three localities from the western and south-western of Algeria was tested in vitro on clinical isolates of seven species of bacteria (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Xanthomonas maltophila, Enterococcus feacalis, and Staphylococcus aureus) and three species of fungi (Candida albicans, Candida albicans ATCC20027 and Candida albicans ATCC20032). Diffusion method was used for antibacterial and antifungal activities testing. All of the extracts showed strong antimicrobial activity against both fungi and bacterial strains at the concentration of 105 µg/ml. The essential oils exhibited strong antibacterial activity against Staphylococcus aureus and Enterococcus feacalis with MIC lower than 10 µg/ml. Candida albicans showed resistance to all volatile oils tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Barrero AF, Herrador MM, Arteaga JF, Akssira M (2005) Chemical composition of the essential oils of Pistacia atlantica Desf. JEOR 17(1):52–54

    Google Scholar 

  2. Baytop T (1999) Therapy with medicinal plants in Turkey. Istanbul Nobel Tip Kitap Evleri Press, Istanbul. 2:144–158

    Google Scholar 

  3. Belaiche T, Tantaoui-Elaraki A, Ibrahimy A (1995) Application of a two levels factorial design to the study of the antimicrobial activity of three terpenes. Sci Aliments 15:571–578

    CAS  Google Scholar 

  4. Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (Tea tree) oil: a review of antimicrobial and other medicinal plants. Clin Microbiol Rev 19(1):50–62

    Article  CAS  PubMed  Google Scholar 

  5. Cosentino S, Tuberoso CIG, Pisano B, et al (1999) In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29:130–135

    Article  CAS  PubMed  Google Scholar 

  6. Delazar A, Reid RG, Sarker SD (2004) GC-MS Analysis of the essential oil from the oleoresin of Pistacia atlantica Var. mutica. Chemistry of Natural Compounds 40(1):24–27

    Article  CAS  Google Scholar 

  7. Didry N, Dubreuil L, Pinkas M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharmaceutica Acta Helvetiae 69:25–28

    Article  CAS  PubMed  Google Scholar 

  8. Duru ME, Cakir A, Kordali S, et al (2003) Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia 74:170–176

    Article  CAS  PubMed  Google Scholar 

  9. Giner-Larza E, Manez M, Recio S, et al (2001) Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and HAS anti-inflammatory activity. J Pharmacol 428(1):137–143

    CAS  Google Scholar 

  10. Inouye S, Takizawa T, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Ant Chem 47:565–573

    CAS  Google Scholar 

  11. Kawashty A, Mosharrata El-Gibali SAM, Saleh NAM (2000) The flavonoids of four Pistacia species in Egypt. Biochem Syst Ecol 28:915–917

    Article  CAS  PubMed  Google Scholar 

  12. Kordali S, Cakir A, Zengin H, Duru ME (2003) Antifungal activities of the leaves of three Pistacia species grown in Turkey. Fitoterapia 74:164–167

    Article  CAS  PubMed  Google Scholar 

  13. Koutsoudaki C, Krsek M, Rodger A (2005) Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. J Agric Food Chem 20:681–695

    Google Scholar 

  14. Lachowicz KJ, Jones GP, Briggs DR, et al (1998) The synergistic preservative effects of the essential oils of sweet basil [Ocimum basilicum L.] against acid-tolerant food microflora. Lett Appl Microbiol 26:209–214

    Article  CAS  PubMed  Google Scholar 

  15. Lawrence BM (1993) A planning scheme to evaluate new aromatic plants for the flavor and fragrance industries. In: Janick J, Simon JE, eds. New crops: exploration, research, commercialization. John Wiley & Sons, Inc, NY 1:6–9

    Google Scholar 

  16. Lis-Balchin M, Deans SG (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Microbiol 82:759–762

    Article  CAS  PubMed  Google Scholar 

  17. Marone P, Bono L, Leone E, et al (2001) The possible benefits of mastica, a dietary supplement 13(6):611–614

    CAS  Google Scholar 

  18. Monjauze A (1980) Note sur la régénération du bétoum par semis naturels dans la place d’essais de Kef Lefaa. Bull Soc d’histoire naturelles de l’Afrique du Nord-Alger. Tome 58, Fasc. 3 ET4 2–8 pp.

  19. National Committee for Clinical Laboratory Standards [NCCLS] (2003) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard M7-A6, 6th ed., Wayne, Pa

  20. Scora KM, Scora RW (1998) Effect of volatiles on mycelium growth of Penicillium digitatum, P. italicum, and P. ulaiense. J Basic Microbiol 38:405–413

    Article  CAS  Google Scholar 

  21. Sikkema J, De Bonte JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev Oxford 59:201–222

    CAS  Google Scholar 

  22. Sonboli A, Saleli P, Kanani MR, Ebrahimi SN (2005) a-terpinene, p-cymene antibacterial and antioxidant activities. Z Naturforsch 60:534–538

    CAS  Google Scholar 

  23. Stern B, Heron C, Corr L (2003) Compositional variations in aged and heated Pistacia resin found in late bronze age Canaanite amphorae and bowls from amarna. Egypt Archaeometry 45:457–469

    CAS  Google Scholar 

  24. Tutin TG, Heywood VH, Burgess NA (1968) Flora Europaea. Cambridge University Press: Cambridge, UK, vol 2, p. 237

    Google Scholar 

  25. Tzakou O, Bazos L, Yannitsaros A (2007) Volatile metabolites of Pistacia atlantica Desf. from Greece. Flavour Frag J 22(5):358–362

    Article  CAS  Google Scholar 

  26. Ultee A, Gorris LGM, Smid EJ (1998) Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus. J Appl Microbiol 85:211–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benabderrahmane.

About this article

Cite this article

Benabderrahmane, M., Benali, M., Aouissat, H. et al. Activité antimicrobienne des huiles essentielles de Pistacia atlantica Desf. de l’Algérie. Phytothérapie 7, 304–308 (2009). https://doi.org/10.1007/s10298-009-0505-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-009-0505-5

Mots clés

Keywords

Navigation