Skip to main content
Log in

Rapidly directional biotransformation of tauroursodeoxycholic acid through engineered Escherichia coli

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bear bile powder is a precious medicinal material. It is characterized by high content of tauroursodeoxycholic acid (TUDCA) at a ratio of 1.0–1.5 to taurochenodeoxycholic acid (TCDCA). Here, we reported the biotransformation of tauroursodeoxycholic acid (TUDCA) through Escherichia coli engineered with a two-step mimic biosynthetic pathway of TUDCA from taurochenodeoxycholic acid (TCDCA). Two 7α-hydroxysteroid dehydrogenase (7α-HSDH) and two 7β-hydroxysteroid dehydrogenase (7β-HSDH) genes (named as α1, α2, β1, and β2) were selected and synthesized to create four pathway variants using ePathBrick. All could convert TCDCA to TUDCA and the one harboring α1 and β2 (pα1β2) showed the strongest capability. Utilizing the oxidative and reductive properties of 7α- and 7β-HSDH, an ideal balance between TUDCA and TCDCA was established by optimizing the fermentation conditions. By applying the optimal condition, E. coli containing pα1β2 (BL-pα1β2) produced up to 1.61 ± 0.13 g/L of TUDCA from 3.23 g/L of TCDCA at a ratio of 1.3 to TCDCA. This study provides a potential approach for bear bile substitute production from cheap and readily available chicken bile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li S, Tan HY, Wang N et al (2016) Substitutes for bear bile for the treatment of liver diseases: research progress and future perspective. Evidence-Based Complement Altern Med 2016:1–10. doi:10.1155/2016/4305074

    Google Scholar 

  2. Feng Y, Siu K, Wang N et al (2009) Bear bile: dilemma of traditional medicinal use and animal protection. J Ethnobiol Ethnomed 5:2. doi:10.1186/1746-4269-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483. doi:10.1007/s00018-008-7568-6

    Article  CAS  PubMed  Google Scholar 

  4. Qiao X, Song W, Lin XH et al (2014) Rapid chemical analysis of bear bile: 5 minute separation and quantitation of bile acids using UHPLC-qTOF-MS. Anal Methods 6:596–601. doi:10.1039/c3ay41605d

    Article  CAS  Google Scholar 

  5. Niu X, Xu Y, Yang Q et al (2014) Analytical methods for characterization of bile acids and its application in quality control of cow-bezoar and bear bile powder. Am J Appl Chem 2:96–104. doi:10.11648/j.ajac.20140206.11

    CAS  Google Scholar 

  6. Zhang D, Zhang N (1994) Comparing study on the composition of chicken bile and snake bile. Chin J Biochem Pharm 15:4–7 (in Chinese)

    CAS  Google Scholar 

  7. Yeh YH, Hwang DF (2001) High-performance liquid chromatographic determination for bile components in fish, chicken and duck. J Chromatogr B Biomed Sci Appl 751:1–8. doi:10.1016/S0378-4347(00)00448-5

    Article  CAS  PubMed  Google Scholar 

  8. Qiao X, Ye M, Pan DL et al (2011) Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry. J Chromatogr A 1218:107–117. doi:10.1016/j.chroma.2010.10.116

    Article  CAS  PubMed  Google Scholar 

  9. Momose T, Tsubaki T, Iida T, Nambara T (1997) An improved synthesis of taurine- and glycine-conjugated bile acids. Lipids 32:775–778. doi:10.1007/s11745-997-0099-8

    Article  CAS  PubMed  Google Scholar 

  10. Fedorowski T, Salen G, Tint GS, Mosbach E (1979) Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria. Gastroenterology 77:1068–1073. doi:10.1016/S0016-5085(79)80079-7

    CAS  PubMed  Google Scholar 

  11. Hirano S, Masuda N (1981) Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J Lipid Res 22:1060–1068

    CAS  PubMed  Google Scholar 

  12. Carballeira JD, Quezada MA, Hoyos P et al (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714. doi:10.1016/j.biotechadv.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  13. Chemler JA, Lim CG, Daiss JL, Koffas MAG (2010) A versatile microbial system for biosynthesis of novel polyphenols with altered estrogen receptor binding activity. Chem Biol 17:392–401. doi:10.1016/j.chembiol.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  14. Lim CG, Fowler ZL, Hueller T et al (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460. doi:10.1128/AEM.02186-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrandi EE, Bertolesi GM, Polentini F et al (2012) In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl Microbiol Biotechnol 95:1221–1233. doi:10.1007/s00253-011-3798-x

    Article  CAS  PubMed  Google Scholar 

  16. Lee J-Y, Arai H, Nakamura Y et al (2013) Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J Lipid Res 54:3062–3069. doi:10.1194/jlr.M039834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun M, Sun B, Anselment B, Weuster-Botz D (2012) Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Appl Microbiol Biotechnol 95:1457–1468. doi:10.1007/s00253-012-4072-6

    Article  CAS  PubMed  Google Scholar 

  18. Sun B, Kantzow C, Bresch S et al (2013) Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts. Biotechnol Bioeng 110:68–77. doi:10.1002/bit.24606

    Article  CAS  PubMed  Google Scholar 

  19. Riva S, Bovara R, Pasta P, Carrea G (1986) Preparative-scale regio- and stereospecific oxidoreduction of cholic acid and dehydrocholic acid catalyzed by hydroxysteroid dehydrogenases. J Org Chem 51:2902–2906. doi:10.1021/jo00365a009

    Article  CAS  Google Scholar 

  20. Bovara R, Canzi E, Carrea G et al (1993) Enzymatic alpha/beta inversion of the C-7-hydroxyl of steroids. J Org Chem 58:499–501

    Article  CAS  Google Scholar 

  21. Liu L, Braun M, Gebhardt G et al (2013) One-step synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid using a multienzymatic system. Appl Microbiol Biotechnol 97:633–639. doi:10.1007/s00253-012-4340-5

    Article  CAS  PubMed  Google Scholar 

  22. Zheng MM, Wang RF, Li CX, Xu JH (2015) Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem 50:598–604. doi:10.1016/j.procbio.2014.12.026

    Article  CAS  Google Scholar 

  23. Ji Q, Tan J, Zhu L et al (2016) Preparing tauroursodeoxycholic acid (TUDCA) using a double-enzyme-coupled system. Biochem Eng J 105:1–9. doi:10.1016/j.bej.2015.08.005

    Article  CAS  Google Scholar 

  24. Xu P, Vansiri A, Bhan N, Koffas MAG (2012) ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 1:256–266. doi:10.1021/sb300016b

    Article  CAS  PubMed  Google Scholar 

  25. Yoshimoto T, Higashi H, Kanatani A et al (1991) Cloning and sequencing of the 7 alpha-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme. J Bacteriol 173:2173–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao S, Jones JA, Lachance DM et al (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng 28:43–53. doi:10.1016/j.ymben.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  27. Chemler JA, Lock LT, Koffas MAG, Tzanakakis ES (2007) Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. Appl Microbiol Biotechnol 77:797–807. doi:10.1007/s00253-007-1227-y

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Xiong A, He Y et al (2008) Bile acids metabonomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography–mass spectrometry. Chem Res Toxicol 21:2280–2288. doi:10.1021/tx800225q

    Article  CAS  PubMed  Google Scholar 

  29. Keasling JD (2011) Synthetic biology for synthetic fuels. Aspen Ideas Festiv 3:64–76. doi:10.1021/cb7002434

    Google Scholar 

  30. Jones JAA, Koffas MAG (2016) Optimizing metabolic pathways for the improved production of natural products. Methods Enzymol. 575:179–193. doi:10.1016/bs.mie.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  31. Yan Y, Li Z, Koffas MAG (2008) High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 100:126–140. doi:10.1002/bit.21721

    Article  CAS  PubMed  Google Scholar 

  32. Xu P, Gu Q, Wang W et al (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409. doi:10.1038/ncomms2425

    Article  PubMed  Google Scholar 

  33. Zhao SJ, Hu ZB, Liu D, Leung FCC (2006) Two divergent members of 4-coumarate: coenzyme a ligase from Salvia miltiorrhiza bunge: cDNA cloning and functional study. J Integr Plant Biol 48:1355–1364. doi:10.1111/j.1744-7909.2006.00302.x

    Article  CAS  Google Scholar 

  34. Xu P, Rizzoni EA, Sul S-Y, Stephanopoulos G (2016) Improving metabolic pathway efficiency by statistical model-based multivariate regulatory metabolic engineering. ACS Synth Biol 6(1):148–158. doi:10.1021/acssynbio.6b00187

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science and Technology Major Projects (2014ZX09301306-007) and National Science Foundation of China (No. 81673540). We greatly appreciate Professor Zhibi Hu and Mrs Jiyan Zhou, Shanghai University of Traditional Chinese Medicine, for their valuable comments and suggestions, and the company of Shanghai Kaibao Pharmaceutica Co. Ltd., China for providing chicken bile and the standard reference of bile acids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shujuan Zhao or Zhengtao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, J., Yu, L. et al. Rapidly directional biotransformation of tauroursodeoxycholic acid through engineered Escherichia coli . J Ind Microbiol Biotechnol 44, 1073–1082 (2017). https://doi.org/10.1007/s10295-017-1935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1935-y

Keywords

Navigation