Skip to main content
Log in

CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aouida M, Piatek MJ, Bangarusamy DK, Mahfouz MM (2014) Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr Genet 60:61–74

    Article  CAS  PubMed  Google Scholar 

  2. Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20:135–141

    Article  CAS  PubMed  Google Scholar 

  3. Beland FA, Benson RW, Mellick PW, Kovatch RM, Roberts DW, Fang JL, Doerge DR (2005) Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem Toxicol 43:1–19

    Article  CAS  PubMed  Google Scholar 

  4. Chaparro-Garcia A, Kamoun S, Nekrasov V (2015) Boosting plant immunity with CRISPR/Cas. Genome Biol 16:254

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  6. Cho SW, Lee J, Carroll D, Kim JS, Lee J (2013) Heritable Gene Knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195:1177–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coulon J, Husnik JI, Inglis DL, van der Merwe GK, Lonvaud A, Erasmus DJ, van Vuuren HJJ (2006) Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Viticult 57:113–124

    CAS  Google Scholar 

  9. Guo XW, Li YZ, Guo J, Wang Q, Huang SY, Chen YF, Du LP, Xiao DG (2016) Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 43:671–679

    Article  CAS  PubMed  Google Scholar 

  10. Hara S, Tamano M, Yamashita S, Kato T, Saito T, Sakuma T, Yamamoto T, Inui M, Takada S (2015) Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci Rep 5:11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ingledew W, Magnus C, Patterson J (1987) Yeast foods and ethyl carbamate formation in wine. Am J Enol Vitic 38:332–335

    CAS  Google Scholar 

  13. Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M (2014) Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 5:5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuribayashi T, Tamura H, Sato K, Nabekura Y, Aoki T, Anzawa Y, Katsumata K, Ohdaira S, Yamashita S, Kume K, Kaneoke M, Watanabe K, Hirata D (2013) Isolation of a non-urea-producing Sake yeast strain carrying a discriminable molecular marker. Biosci Biotech Bioch 77:2505–2509

    Article  CAS  Google Scholar 

  15. Lachenmeier DW (2007) Consequences of IARC re-evaluation of alcoholic beverage consumption and ethyl carbamate on food control. Deut Lebensm-Rundsch 103:307–311

    CAS  Google Scholar 

  16. Lee JY, Yang KS, Jang SA, Sung BH, Kim SC (2011) Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 108:742–749

    Article  CAS  PubMed  Google Scholar 

  17. Lee KG (2013) Analysis and risk assessment of ethyl carbamate in various fermented foods. Eur Food Res Technol 236:891–898

    Article  CAS  Google Scholar 

  18. Li T, Yang B (2013) TAL effector nuclease (TALEN) engineering. Methods Mol Biol 978:63–72

    Article  CAS  PubMed  Google Scholar 

  19. Lim HS, Lee KG (2011) Development and validation of analytical methods for ethyl carbamate in various fermented foods. Food Chem 126:1373–1379

    Article  CAS  Google Scholar 

  20. Münch P, Hofmann T, Schieberle P (1997) Comparison of key odorants generated by thermal treatment of commercial and self-prepared yeast extracts: influence of the amino acid composition on odorant formation. J Agric Food Chem 45:1338–1344

    Article  Google Scholar 

  21. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNAwith reduced off-target sites. Bioinformatics 31(7):1120–1123

    Article  CAS  PubMed  Google Scholar 

  23. Park HD, Shin MC, Woo IS (2001) Antisense-mediated inhibition of arginase (CAR1) gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 92:481–484

    Article  CAS  PubMed  Google Scholar 

  24. Park KS, Lee H, Kim JS (2006) Enhancing the solubility of recombinant Akt1 in Escherichia coli with an artificial transcription factor library. J Microbiol Biotechnol 16:299–302

    CAS  Google Scholar 

  25. Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA 111:E2967–E2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B (2014) Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 9:e95611

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schehl B, Senn T, Lachenmeier DW, Rodicio R, Heinisch JJ (2007) Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Appl Microbiol Biotechnol 74:843–850

    Article  CAS  PubMed  Google Scholar 

  28. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang AP, Fang W, Ji W, Li W, Zhao X, Zhou Q (2015) One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res 25:258–261

    Article  CAS  PubMed  Google Scholar 

  30. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  31. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  32. Wu D, Li X, Lu J, Chen J, Zhang L, Xie G (2016) Constitutive expression of the DUR1, 2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. FEMS Microbiol Lett 363:fnv214

    Article  PubMed  Google Scholar 

  33. Wu DH, Li XM, Shen C, Lu J, Chen J, Xie GF (2014) Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Int J Food Microbiol 180:19–23

    Article  CAS  PubMed  Google Scholar 

  34. Wu PG, Pan XD, Wang LY, Shen XH, Yang DJ (2012) A survey of ethyl carbamate in fermented foods and beverages from Zhejiang, China. Food Control 23:286–288

    Article  CAS  Google Scholar 

  35. Yusa K (2013) Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 8:2061–2078

    Article  CAS  PubMed  Google Scholar 

  36. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang GC, Kong II, Kim H, Liu JJ, Cate JH, Jin YS (2014) Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Appl Environ Microbiol 80:7694–7701

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao X, Zou H, Fu J, Zhou J, Du G, Chen J (2014) Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system. Appl Environ Microbiol 80:392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao XR, Du GC, Zou HJ, Fu JW, Zhou JW, Chen J (2013) Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci Tech 32:97–107

    Article  Google Scholar 

  40. Zlotorynski E (2015) Plant cell biology: CRISPR-Cas protection from plant viruses. Nat Rev Mol Cell Biol 16:642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Korea Food Research Institute (Project No. E0153106-04) and by High Value-added Food Technology Development Program (2015-314078-3) funded by the Ministry of Agriculture, Food, and Rural Affairs (Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, YW., Kang, WK., Jang, H.W. et al. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 43, 1517–1525 (2016). https://doi.org/10.1007/s10295-016-1831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1831-x

Keywords

Navigation