Skip to main content
Log in

Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The yeast Saccharomyces cerevisiae is an important industrial platform for the production of grain and cellulosic ethanol, isobutanol, butanediol, isoprenoids, and other chemicals. The construction of a successful production strain usually involves multiple gene knockouts and chromosomal integration of expression cassettes to redirect the metabolic fluxes for the conversion of sugars and other feed stocks into the desired product. RNA-guided Cas9 based genome editing has been demonstrated in many prokaryotic and eukaryotic hosts including S. cerevisiae, in which it has been additionally exploited as a tool for metabolic engineering. To extend the utilization of RNA-guided Cas9 as a metabolic pathway building tool, we demonstrated the direct assembly and chromosomal integration of up to 17 overlapping DNA fragments encoding the beta-carotene biosynthetic pathway. Furthermore, we generated a combinatorial strain library for the beta-carotene biosynthetic pathway, directly integrated into the yeast genome to create a diverse library of strains. This enabled the screening of combinatorial libraries in stable chromosomally integrated strains for rapid improvements of product titers. This combinatorial approach for pathway assembly will significantly accelerate the current speed of metabolic engineering for S. cerevisiae as an industrial platform, and increase the number of strains that can be simultaneously evaluated for enzyme screening, expression optimization and protein engineering to achieve the titer, rate and yield necessary for the commercialization of new industrial fermentation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akada RKT, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23:399–405

    Article  CAS  PubMed  Google Scholar 

  2. Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H (2015) Homology-Integrated CRISPR−Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–594

    CAS  Google Scholar 

  3. Barrangou RC-MA, Stahl B, Chavichvily I, Damange F, Romero DA, Boyaval P, Fremaux C, Horvath P (2013) Genomic impact of CRISPR immunization against bacteriophages. Biochem Soc Trans 41:1383–1391

    Article  CAS  PubMed  Google Scholar 

  4. Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9:609–620

    Article  CAS  PubMed  Google Scholar 

  5. Cong LZF (2015) Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 1239:197–217

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham F Jr, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41:478–492

    Article  CAS  PubMed  Google Scholar 

  7. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucl Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doudna JA (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  Google Scholar 

  9. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA 3rd (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105:20404–20409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  14. Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS, Newman JD (2015) Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems. doi:10.1016/j.cels.2015.02.001.24

    PubMed  Google Scholar 

  15. Jakočiūnas T, Bonde I, Herrgard M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  PubMed  Google Scholar 

  16. Jakočiūnas T, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjødt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD (2015) CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol 4(11):1226–1234

    Article  PubMed  Google Scholar 

  17. Jensen MK, Keasling JD (2014) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. doi:10.1111/1567-1364.12185

    Google Scholar 

  18. Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MA (2015) ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep. 5:11301. doi:10.1038/srep11301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuijpers NG, Chroumpi S, Vos T, Solis-Escalante D, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P (2013) One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 13:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leber C, Da Silva NA (2014) Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111:347–358

    Article  CAS  PubMed  Google Scholar 

  21. Lee ME, DeLoache WC, Cervantes B, Dueber JE (2015) A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth Biol doi:10.1021/sb500366v

    Google Scholar 

  22. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  Google Scholar 

  23. Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NG, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JM (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15(2):fov004

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peccoud J, Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765

    Article  Google Scholar 

  25. Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49:66–71

    Article  CAS  PubMed  Google Scholar 

  26. Qian Li ZS, Li Jing, Zhang Yansheng (2013) Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. FEMS Microbiol Lett 345:94–101

    Article  PubMed  Google Scholar 

  27. Horton RM (1995) PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3(2):93–99

    Article  CAS  PubMed  Google Scholar 

  28. Ronda C, Maury J, Jakociunas T, Jacobsen SA, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT (2015) CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Fact 14:97

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JH (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife 3:e03703

    Article  PubMed Central  Google Scholar 

  30. Shao Z, Zhao HUA, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucl Acids Res 37:e16

    Article  PubMed  Google Scholar 

  31. Sharpe P, Ye R, Zhu, Q (2007) US Patent 8846374, Carotenoid production in a recombinant oleagenous yeast

  32. Sun J, Alper HS (2015) Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. J Ind Microbiol Biotechnol 42:423–436

    Article  CAS  PubMed  Google Scholar 

  33. Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS (2015) Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnol Bioeng. doi:10.1002/bit.25632

    PubMed  Google Scholar 

  34. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2014) Construction of a controllable beta-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  CAS  PubMed  Google Scholar 

  35. Yan Y, Kohli A, Koffas MA (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71(9):5610–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang GC, Kong II, Kim H, Liu JJ, Cate JHD, Jin YS (2014) Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae Strain by Using RNA-Guided Cas9 Nuclease. App Env Microbiol 80(24):7694–7701

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the following DuPont colleagues for their assistance with the work described here. We thank Xiaochun Fan, Brian Paul, William Rutherford, Pamela Sharpe, Melissa Bosak, Wonchul Suh, Bhaska Bhadra and Zhixiong Xue for sharing yeast strains, plasmids and protocols. We thank John Kozlowski and Beth Ann Fenner for performing HPLC analysis of β-carotene. Arle Kruckeberg, Raymond Seung-Pyo Hong, Mick Ward, and Zhixiong Xue are appreciated for editing the manuscript. We also thank Ethel Jackson, Ryan Frisch, and Xiaochun Fan for valuable discussions. In addition, we would like to thank Wayne Alphin and Eva Nagel for their help with imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixuan L. Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EauClaire, S.F., Zhang, J., Rivera, C.G. et al. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9. J Ind Microbiol Biotechnol 43, 1001–1015 (2016). https://doi.org/10.1007/s10295-016-1776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1776-0

Keywords

Navigation