Skip to main content
Log in

Streptomyces metabolites in divergent microbial interactions

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amano S, Morota T, Kano YK et al (2010) Promomycin, a polyether promoting antibiotic production in Streptomyces spp. J Antibiot 63:486–491

    Article  CAS  PubMed  Google Scholar 

  2. Amano SI, Sakurai T, Endo K et al (2011) A cryptic antibiotic triggered by monensin. J Antibiot 64:703

    Article  CAS  PubMed  Google Scholar 

  3. Buchholz K, Collins J (2013) The roots—a short history of industrial microbiology and biotechnology. Appl Microbiol Biotechnol 97:3747–3762

    Article  CAS  PubMed  Google Scholar 

  4. Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 361:761–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499

    Article  CAS  PubMed  Google Scholar 

  6. Eto D, Watanabe K, Saeki H et al (2013) Divergent effects of desferrioxamine on bacterial growth and characteristics. J Antibiot 66:199–203

    Article  CAS  PubMed  Google Scholar 

  7. Fujimoto M, Yamada A, Kurosawa J, Kawata A, Beppu T, Takano H, Ueda K (2012) Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces. Microb Biotechnol 5:477–488

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gunter K, Toupet C, Schupp T (1993) Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus: repressor-binding site and homology to the diphtheria toxin gene promoter. J Bacteriol 175:3295–3302

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Hara O, Beppu T (1982) Induction of streptomycin-inactivating enzyme by A-factor in Streptomyces griseus. J Antibiot 35:1208–1215

    Article  CAS  PubMed  Google Scholar 

  10. Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem 71:283–299

    Article  CAS  PubMed  Google Scholar 

  11. Khokhlov AS, Tovarova II, Borisova LN et al (1967) The A-factor, responsible for streptomycin biosynthesis by mutant strains of actinomyces streptomycini. Dokl Akad Nauk SSSR 177:232–235

    CAS  PubMed  Google Scholar 

  12. Klotz LO, Hou X, Jacob C (2014) 1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling. Molecules 19:14902–14918

    Article  PubMed  Google Scholar 

  13. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285

    Article  CAS  PubMed  Google Scholar 

  14. Meng L, Li M, Yang SH, Kim TJ, Suh JW (2011) Intracellular ATP levels affect secondary metabolite production in Streptomyces spp. Biosci Biotechnol Biochem 75:1576–1581

    Article  CAS  PubMed  Google Scholar 

  15. Mitani M, Ohtake N (1978) Studies on the ionophorous antibiotics. XVI. The ionophore-mediated calcium transport and concomitant osmotic swelling of mitochondria. J Antibiot 31:888–893

    Article  CAS  PubMed  Google Scholar 

  16. Nishiyama T, Hashimoto Y, Kusakabe H, Kumano T, Kobayashi M (2014) Natural low-molecular mass organic compounds with oxidase activity as organocatalysts. Proc Natl Acad Sci USA 111:17152–17157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Perlman D (1959) Microbial synthesis of cobamides. Adv Appl Microbiol 1:87–122

    Article  CAS  PubMed  Google Scholar 

  18. Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  CAS  PubMed  Google Scholar 

  19. Takano H, Beppu T, Ueda K (2006) The CarA/LitR-family transcriptional regulator: its possible role as a photosensor and wide distribution in non-phototrophic bacteria. Biosci Biotechnol Biochem 70:2320–2324

    Article  CAS  PubMed  Google Scholar 

  20. Takano H, Hagiwara K, Ueda K (2015) Fundamental role of cobalamin biosynthesis in the developmental growth of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 99:2329–2337

    Article  CAS  PubMed  Google Scholar 

  21. Takano H, Mise K, Hagiwara K, Hirata N, Watanabe S, Toriyabe M, Shiratori-Takano H, Ueda K (2015) The role and function of LitR, an AdoB12-bound light-sensitive regulator of Bacillus megaterium QM B1551, in the regulation of carotenoid production. J Bacteriol 197:2301–2315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–1832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ueda K, Kawai S, Ogawa H, Kiyama A, Kubota T, Kawanobe H, Beppu T (2000) Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. J Antibiot 53:979–982

    Article  CAS  PubMed  Google Scholar 

  24. Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151:2899–2905

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michihiko Kobayashi or Kenji Ueda.

Additional information

Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takano, H., Nishiyama, T., Amano, Si. et al. Streptomyces metabolites in divergent microbial interactions. J Ind Microbiol Biotechnol 43, 143–148 (2016). https://doi.org/10.1007/s10295-015-1680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1680-z

Keywords

Navigation