Skip to main content
Log in

Engineering the supply chain for protein production/secretion in yeasts and mammalian cells

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Metabolic bottlenecks play an increasing role in yeasts and mammalian cells applied for high-performance production of proteins, particularly of pharmaceutical ones that require complex posttranslational modifications. We review the present status and developments focusing on the rational metabolic engineering of such cells to optimize the supply chain for building blocks and energy. Methods comprise selection of beneficial genetic modifications, rational design of media and feeding strategies. Design of better producer cells based on whole genome-wide metabolic network analysis becomes increasingly possible. High-resolution methods of metabolic flux analysis for the complex networks in these compartmented cells are increasingly available. We discuss phenomena that are common to both types of organisms but also those that are different with respect to the supply chain for the production and secretion of pharmaceutical proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. 2013 Profile Biopharmaceutical Research Industry (2014). Accessed 9 Sept 2014

  2. Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama K (2009) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19(4):428–436. doi:10.1093/glycob/cwn157

    CAS  PubMed  Google Scholar 

  3. Alete DE, Racher AJ, Birch JR, Stansfield SH, James DC, Smales CM (2005) Proteomic analysis of enriched microsomal fractions from GS-NS0 murine myeloma cells with varying secreted recombinant monoclonal antibody productivities. Proteomics 5(18):4689–4704. doi:10.1002/pmic.200500019

    CAS  PubMed  Google Scholar 

  4. Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Progr 17(6):1032–1041. doi:10.1021/bp0100981

    CAS  Google Scholar 

  5. Anasontzis GE, Penã MS, Spadiut O, Brumer H, Olsson L (2014) Effects of temperature and glycerol- and methanol- feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris. Biotechnol Progr. doi:10.1002/btpr.1878

    Google Scholar 

  6. Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22(4):174–180. doi:10.1016/j.tibtech.2004.02.004

    CAS  PubMed  Google Scholar 

  7. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993. doi:10.1093/emboj/17.11.2982

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Baik JY, Gasimli L, Yang B, Datta P, Zhang FM, Glass CA, Esko JD, Linhardt RJ, Sharfstein ST (2012) Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin. Metab Eng 14(2):81–90. doi:10.1016/j.ymben.2012.01.008

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Baumann K, Adelantado N, Lang C, Mattanovich D, Ferrer P (2011) Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris. Microb Cell Fact 10:93. doi:10.1186/1475-2859-10-93

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141. doi:10.1186/1752-0509-4-141

    PubMed Central  PubMed  Google Scholar 

  11. Bibila T, Flickinger MC (1991) A structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells. Biotechnol Bioeng 37(3):210–226. doi:10.1002/bit.260370304

    CAS  PubMed  Google Scholar 

  12. Bibila TA, Flickinger MC (1992) Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: I. Steady-state analysis. Biotechnol Bioeng 39(3):251–261. doi:10.1002/bit.260390302

    CAS  PubMed  Google Scholar 

  13. Bibila TA, Flickinger MC (1992) Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: II. Transient analysis. Biotechnol Bioeng 39(3):262–272. doi:10.1002/bit.260390303

    CAS  PubMed  Google Scholar 

  14. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558. doi:10.1016/j.femsyr.2004.09.008

    CAS  PubMed  Google Scholar 

  15. Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Bonander N, Darby RA, Grgic L, Bora N, Wen J, Brogna S, Poyner DR, O’Neill MA, Bill RM (2009) Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 8:10. doi:10.1186/1475-2859-8-10

    PubMed Central  PubMed  Google Scholar 

  17. Brackley CA, Romano MC, Thiel M (2011) The dynamics of supply and demand in mRNA translation. PLoS Comput Biol 7:e1002203. doi:10.1371/journal.pcbi.1002203

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE, Galosy S, Muller D, Noll T, Wienberg J, Jostock T, Leonard M, Grillari J, Tauch A, Goesmann A, Helk B, Mott JE, Puhler A, Borth N (2013) Chinese hamster genome sequenced from sorted chromosomes. Nat Biotechnol 31(8):694–695. doi:10.1038/nbt.2645

    CAS  PubMed  Google Scholar 

  19. Carnicer M, Ten Pierick A, van Dam J, Heijnen JJ, Albiol J, van Gulik W, Ferrer P (2012) Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions. Microb Cell Fact 11:83. doi:10.1186/1475-2859-11-83

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Celik E, Calik P (2011) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118. doi:10.1016/j.biotechadv.2011.09.011

    PubMed  Google Scholar 

  21. Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 11:466–475. doi:10.1016/S0955-0674(99)80067-2

    CAS  PubMed  Google Scholar 

  22. Chu L, Blumentals I, Maheshwari G (2005) Production of recombinant therapeutic proteins by mammalian cells in suspension culture. In: Smales CM, James D (eds) Therapeutic proteins, vol 308. Methods in Molecular Biology™. Humana Press, pp 107–121. doi:10.1385/1-59259-922-2:107

  23. Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vazquez F, Abasolo I, Giuliani M, Jantti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S Jr, Tutino ML, Villaverde A (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31(2):140–153. doi:10.1016/j.biotechadv.2012.09.001

    CAS  PubMed  Google Scholar 

  24. Crown SB, Ahn WS, Antoniewicz MR (2012) Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst Biol 6:43. doi:10.1186/1752-0509-6-43

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta 1771:299–309. doi:10.1016/j.bbalip.2006.07.001

    CAS  PubMed  Google Scholar 

  26. Damasceno LM, Huang C-J, Batt CA (2012) Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 93:31–39. doi:10.1007/s00253-011-3654-z

    PubMed  Google Scholar 

  27. Daran JM, Dallies N, Thines-Sempoux D, Paquet V, Francois J (1995) Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem/FEBS 233(2):520–530. doi:10.1111/j.1432-1033.1995.520_2.x

    CAS  Google Scholar 

  28. Davidson RC, Nett JH, Renfer E, Li H, Stadheim TA, Miller BJ, Miele RG, Hamilton SR, Choi BK, Mitchell TI, Wildt S (2004) Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14(5):399–407. doi:10.1093/glycob/cwh023

    CAS  PubMed  Google Scholar 

  29. Delic M, Gongrich R, Mattanovich D, Gasser B (2014) Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 21(3):414–437

    CAS  PubMed  Google Scholar 

  30. Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Köllensperger G, Mattanovich D, Gasser B (2012) Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radical Bio Med 52:2000–2012. doi:10.1016/j.freeradbiomed.2012.02.048

    CAS  Google Scholar 

  31. Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37(6):872–914. doi:10.1111/1574-6976.12020

    CAS  PubMed  Google Scholar 

  32. Dempski RE, Imperiali B (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol 6:844–850

    CAS  PubMed  Google Scholar 

  33. Deshpande R, Yang TH, Heinzle E (2009) Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4(2):247–263. doi:10.1002/biot.200800143

    CAS  PubMed  Google Scholar 

  34. Dietmair S, Hodson MP, Quek LE, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS One 7(8):e43394. doi:10.1371/journal.pone.0043394

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Dietmair S, Nielsen LK, Timmins NE (2012) Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnol J 7(1):75–89

    CAS  PubMed  Google Scholar 

  36. Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14(1):47–58. doi:10.1016/j.ymben.2011.11.002

    CAS  PubMed  Google Scholar 

  37. Fan Y, Jimenez DVI, Müller C, Wagtberg SJ, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR (2014) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng. doi:10.1002/bit.25450

    PubMed  Google Scholar 

  38. Feizi A, Osterlund T, Petranovic D, Bordel S, Nielsen J (2013) Genome-scale modeling of the protein secretory machinery in yeast. PLoS One 8:e63284. doi:10.1371/journal.pone.0063284

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Ferndahl C, Bonander N, Logez C, Wagner R, Gustafsson L, Larsson C, Hedfalk K, Darby RAJ, Bill RM (2010) Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Fact 9:47. doi:10.1186/1475-2859-9-47

    PubMed Central  PubMed  Google Scholar 

  40. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17. doi:10.1186/1475-2859-8-17

    PubMed Central  PubMed  Google Scholar 

  41. Fischer S, Wagner A, Kos A, Aschrafi A, Handrick R, Hannemann J, Otte K (2013) Breaking limitations of complex culture media: functional non-viral miRNA delivery into pharmaceutical production cell lines. J Biotechnol 168(4):589–600. doi:10.1016/j.jbiotec.2013.08.027

    CAS  PubMed  Google Scholar 

  42. Förster J, Halbfeld C, Zimmermann M, Blank LM (2014) A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Res 14(7):1090–1100. doi:10.1111/1567-1364.12205

    PubMed  Google Scholar 

  43. Freund S, Rath A, Barradas OP, Skerhutt E, Scholz S, Niklas J, Sandig V, Rose T, Heinzle E, Noll T, Portner R, Zeng AP, Reichl U (2013) Batch-to-batch variability of two human designer cell lines-AGE1.HN and AGE1.HN.AAT—carried out by different laboratories under defined culture conditions using a mathematical model. Eng. Life Sci 13(6):580–592. doi:10.1002/elsc.201200111

    CAS  Google Scholar 

  44. Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact 4:30. doi:10.1186/1475-2859-4-30

    PubMed Central  PubMed  Google Scholar 

  45. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotech 22(11):1409–1414. doi:10.1038/nbt1028

    CAS  Google Scholar 

  46. Gonzalez R, Andrews BA, Molitor J, Asenjo JA (2003) Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Biotechnol Bioeng 82:152–169. doi:10.1002/bit.10556

    CAS  PubMed  Google Scholar 

  47. Graf A, Dragosits M, Gasser B, Mattanovich D (2009) Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res 9:335–348. doi:10.1111/j.1567-1364.2009.00507.x

    CAS  PubMed  Google Scholar 

  48. Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Honer Zu, Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153(1–2):62–75. doi:10.1016/j.jbiotec.2011.02.011

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Hammond S, Kaplarevic M, Borth N, Betenbaugh MJ, Lee KH (2012) Chinese hamster genome database: an online resource for the CHO community at www.CHOgenome.org. Biotechnol Bioeng 109(6):1353–1356. doi:10.1002/bit.24374

  50. Hashimoto H, Sakakibara A, Yamasaki M, Yoda K (1997) Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation. J Biol Chem 272(26):16308–16314. doi:10.1074/jbc.272.26.16308

    CAS  PubMed  Google Scholar 

  51. Hayduk EJ, Lee KH (2005) Cytochalasin D can improve heterologous protein productivity in adherent Chinese hamster ovary cells. Biotechnol Bioeng 90(3):354–364. doi:10.1002/bit.20438

    CAS  PubMed  Google Scholar 

  52. Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349. doi:10.1534/genetics.111.130286

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Heyland J, Fu J, Blank LM, Schmid A (2011) Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng 108:1942–1953. doi:10.1002/bit.23114

    CAS  PubMed  Google Scholar 

  54. Hou J, Osterlund T, Liu Z, Petranovic D, Nielsen J (2013) Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3559–3568. doi:10.1007/s00253-012-4596-9

    CAS  PubMed  Google Scholar 

  55. Hou J, Tang H, Liu Z, Österlund T, Nielsen J, Petranovic D (2014) Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res 14:481–494. doi:10.1111/1567-1364.12125

    CAS  PubMed  Google Scholar 

  56. Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J (2012) Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng 14:120–127. doi:10.1016/j.ymben.2012.01.002

    CAS  PubMed  Google Scholar 

  57. Hou J, Tyo KEJ, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510. doi:10.1111/j.1567-1364.2012.00810.x

    CAS  PubMed  Google Scholar 

  58. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Microb Cell Fact 86:403–417. doi:10.1007/s00253-010-2447-0

    CAS  Google Scholar 

  59. Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K (2010) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85:667–677. doi:10.1007/s00253-009-2151-0

    CAS  PubMed  Google Scholar 

  60. Jandt U, Platas Barradas O, Portner R, Zeng AP (2014) Mammalian cell culture synchronization under physiological conditions and population dynamic simulation. Appl Microbiol Biotechnol 98(10):4311–4319. doi:10.1007/s00253-014-5553-6

    CAS  PubMed  Google Scholar 

  61. Jimenez del Val I, Nagy JM, Kontoravdi C (2011) A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Progr 27(6):1730–1743. doi:10.1002/btpr.688

    CAS  Google Scholar 

  62. Jordà J, de Jesus SS, Peltier S, Ferrer P, Albiol J (2014) Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids. New Biotechnol 31:120–132. doi:10.1016/j.nbt.2013.06.007

    Google Scholar 

  63. Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb Cell Fact 11:57. doi:10.1186/1475-2859-11-57

    PubMed Central  PubMed  Google Scholar 

  64. Jordà J, Rojas HC, Carnicer M, Wahl A, Ferrer P, Albiol J (2014) Quantitative metabolomics and instationary 13C-metabolic flux analysis reveals impact of recombinant protein production on trehalose and energy metabolism in Pichia pastoris. Metabolites 4:281–299. doi:10.3390/metabo4020281

    PubMed Central  PubMed  Google Scholar 

  65. Jorda J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A (2013) Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Syst Biol 7:17. doi:10.1186/1752-0509-7-17

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kainz E, Gallmetzer A, Hatzl C, Nett JH, Li H, Schinko T, Pachlinger R, Berger H, Reyes-Dominguez Y, Bernreiter A, Gerngross T, Wildt S, Strauss J (2008) N-glycan modification in Aspergillus species. Appl Environ Microbiol 74(4):1076–1086. doi:10.1128/aem.01058-07

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kaleta C, Schauble S, Rinas U, Schuster S (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8(9):1105–1114. doi:10.1002/biot.201200267

    CAS  PubMed  Google Scholar 

  68. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195. doi:10.1016/j.ymben.2012.01.004

    CAS  PubMed  Google Scholar 

  69. Khan SU, Schroder M (2008) Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 57(3):207–231. doi:10.1007/s10616-008-9157-9

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kim H, Yoo SJ, Kang HA (2014) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. doi:10.1111/1567-1364.12195

    PubMed  Google Scholar 

  71. Kimura T, Hosoda Y, Sato Y, Kitamura Y, Ikeda T, Horibe T, Kikuchi M (2005) Interactions among yeast protein-disulfide isomerase proteins and endoplasmic reticulum chaperone proteins influence their activities. J Biol Chem 280:31438–31441. doi:10.1074/jbc.M503377200

    CAS  PubMed  Google Scholar 

  72. Klanert G, Jadhav V, Chanoumidou K, Grillari J, Borth N, Hackl M (2014) Endogenous microRNA clusters outperform chimeric sequence clusters in Chinese hamster ovary cells. Biotechnol J 9(4):538–544. doi:10.1002/biot.201300216

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Klein T, Heinzle E, Schneider K (2013) Metabolic fluxes in Schizosaccharomyces pombe grown on glucose and mixtures of glycerol and acetate. Appl Microbiol Biotechnol 97:5013–5026. doi:10.1007/s00253-013-4718-z

    CAS  PubMed  Google Scholar 

  74. Klein T, Lange S, Wilhelm N, Bureik M, Yang T-H, Heinzle E, Schneider K (2014) Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe—a quantitative approach using 13C-based metabolic flux analysis. Metab Eng 21:34–45. doi:10.1016/j.ymben.2013.11.001

    CAS  PubMed  Google Scholar 

  75. Klitgord N, Segre D (2010) The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles. Genome Inform Int Conf Genome Inform 22:41–55

    Google Scholar 

  76. Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A (2012) Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microb Cell Fact 11:22. doi:10.1186/1475-2859-11-22

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92(6):711–728. doi:10.1002/bit.20645

    CAS  PubMed  Google Scholar 

  78. Lee YY, Wong KT, Nissom PM, Wong DC, Yap MG (2007) Transcriptional profiling of batch and fed-batch protein-free 293-HEK cultures. Metab Eng 9(1):52–67. doi:10.1016/j.ymben.2006.08.006

    CAS  PubMed  Google Scholar 

  79. Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765. doi:10.1038/nbt.2624

    CAS  PubMed  Google Scholar 

  80. Liu L, Martínez JL, Liu Z, Petranovic D, Nielsen J (2014) Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng 21:9–16. doi:10.1016/j.ymben.2013.10.010

    CAS  PubMed  Google Scholar 

  81. Liu Z, Osterlund T, Hou J, Petranovic D, Nielsen J (2013) Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in yeast. Appl Environ Microbiol 79:2962–2967. doi:10.1128/AEM.03207-12

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109:1259–1268. doi:10.1002/bit.24409

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Maccani A, Landes N, Stadlmayr G, Maresch D, Leitner C, Maurer M, Gasser B, Ernst W, Kunert R, Mattanovich D (2014) Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Biotechnol J 9(4):526–537. doi:10.1002/biot.201300305

    CAS  PubMed  Google Scholar 

  84. Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12(8):1006–1014. doi:10.1111/pbi.12256

    CAS  PubMed  Google Scholar 

  85. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Sig 9:2277–2293. doi:10.1089/ars.2007.1782

    CAS  Google Scholar 

  86. Marketsandmarkets (2014) Protein expression market by products (expression vector, service, reagent), application (industrial, therapeutic), expression systems (Mammalian, Prokaryotic, Baculovirus, Yeast) and by end user (Pharmaceutical, Biotechnology, CRO)—Global Forecast to 2018. http://www.marketsandmarkets.com

  87. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Meth Mol Biol 824:329–358. doi:10.1007/978-1-61779-433-9_17

    CAS  Google Scholar 

  88. Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113:121–135. doi:10.1016/j.jbiotec.2004.04.035

    CAS  PubMed  Google Scholar 

  89. Mattanovich D, Sauer M, Gasser B (2014) Yeast biotechnology: teaching the old dog new tricks. Microb Cell Fact 13:34. doi:10.1186/1475-2859-13-34

    PubMed Central  PubMed  Google Scholar 

  90. McAtee AG, Templeton N, Young JD (2014) Role of Chinese hamster ovary central carbon metabolism in controlling the quality of secreted biotherapeutic proteins. Pharm Bioprocess 2(1):63–74. doi:10.4155/pbp.13.65

    Google Scholar 

  91. Milewski S, Gabriel I, Olchowy J (2006) Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast 23:1–14. doi:10.1002/yea.1337

    CAS  PubMed  Google Scholar 

  92. Morawski B, Lin Z, Cirino P, Joo H, Bandara G, Arnold FH (2000) Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Eng 13(5):377–384. doi:10.1093/protein/13.5.377

    CAS  PubMed  Google Scholar 

  93. Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6:352–363. doi:10.1016/j.ymben.2004.06.002

    CAS  PubMed  Google Scholar 

  94. Muller D, Katinger H, Grillari J (2008) MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol 26(7):359–365. doi:10.1016/j.tibtech.2008.03.010

    PubMed  Google Scholar 

  95. Nakayama K, Nagasu T, Shimma Y, Kuromitsu J, Jigami Y (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11(7):2511–2519

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Neelamegham S, Liu G (2011) Systems glycobiology: biochemical reaction networks regulating glycan structure and function. Glycobiology 21(12):1541–1553. doi:10.1093/glycob/cwr036

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ng SK, Wang DI, Yap MG (2007) Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab Eng 9(3):304–316. doi:10.1016/j.ymben.2007.01.001

    CAS  PubMed  Google Scholar 

  98. Nicolae A, Wahrheit J, Bahnemann J, Zeng AP, Heinzle E (2014) Non-stationary 13C metabolic flux analysis of Chinese hamster ovary cells in batch culture using extracellular labeling highlights metabolic reversibility and compartmentation. BMC Syst Biol 8:50. doi:10.1186/1752-0509-8-50

    PubMed Central  PubMed  Google Scholar 

  99. Nie Y, Huang M, Lu J, Qian J, Lin W, Chu J, Zhuang Y, Zhang S (2014) Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis. J Biotechnol 187C:124–134. doi:10.1016/j.jbiotec.2014.07.011

    Google Scholar 

  100. Niklas J, Heinzle E (2012) Metabolic flux analysis in systems biology of mammalian cells. Adv Biochem Eng Biotechnol 127:109–132. doi:10.1007/10_2011_99

    CAS  PubMed  Google Scholar 

  101. Niklas J, Nonnenmacher Y, Rose T, Sandig V, Heinzle E (2012) Quercetin treatment changes fluxes in the primary metabolism and increases culture longevity and recombinant α1-antitrypsin production in human AGE1.HN cells. Appl Microbiol Biotechnol 94:57–67. doi:10.1007/s00253-011-3811-4

    CAS  PubMed  Google Scholar 

  102. Niklas J, Priesnitz C, Rose T, Sandig V, Heinzle E (2013) Metabolism and metabolic burden by α1-antitrypsin production in human AGE1.HN cells. Metab Eng 16C:103–114. doi:10.1016/j.ymben.2013.01.002

    Google Scholar 

  103. Niklas J, Sandig V, Heinzle E (2011) Metabolite channeling and compartmentation in the human cell line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis. J Biosci Bioeng 112(6):616–623. doi:10.1016/j.jbiosc.2011.07.021

    CAS  PubMed  Google Scholar 

  104. Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21(1):63–69. doi:10.1016/j.copbio.2010.01.011

    CAS  PubMed  Google Scholar 

  105. Nocon J, Steiger MG, Pfeffer M, Bum Sohn S, Yong Kim T, Maurer M, Rußmayer H, Pflügl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Köllensperger G, Gasser B, Yup Lee S, Mattanovich D (2014) Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Meta Eng 129–138. doi:10.1016/j.ymben.2014.05.011

  106. O’Callaghan PM, James DC (2008) Systems biotechnology of mammalian cell factories. Brief Funct Genomic Proteomic 7(2):95–110. doi:10.1093/bfgp/eln012

    PubMed  Google Scholar 

  107. Otterstedt K, Larsson C, Bill RM, Ståhlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537. doi:10.1038/sj.embor.7400132

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Pakula TM, Uusitalo J, Saloheimo M, Salonen K, Aarts RJ, Penttila M (2000) Monitoring the kinetics of glycoprotein synthesis and secretion in the filamentous fungus Trichoderma reesei: cellobiohydrolase I (CBHI) as a model protein. Microbiology 146(Pt 1):223–232

    CAS  PubMed  Google Scholar 

  109. Palomares LA, Estrada-Mondaca S, Ramírez OT (2004) Production of recombinant proteins: challenges and solutions. Methods Mol Biol 267:15–52. doi:10.1385/1-59259-774-2:015

    CAS  PubMed  Google Scholar 

  110. Pandhal J, Woodruff LB, Jaffe S, Desai P, Ow SY, Noirel J, Gill RT, Wright PC (2013) Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host. Biotechnol Bioeng 110(9):2482–2493. doi:10.1002/bit.24920

    CAS  PubMed  Google Scholar 

  111. Partow S, Siewers V, Bjørn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964. doi:10.1002/yea.1806

    CAS  PubMed  Google Scholar 

  112. Patenge N, Billion A, Raasch P, Normann J, Wisniewska-Kucper A, Retey J, Boisguerin V, Hartsch T, Hain T, Kreikemeyer B (2012) Identification of novel growth phase- and media-dependent small non-coding RNAs in Streptococcus pyogenes M49 using intergenic tiling arrays. BMC Genom 13:550. doi:10.1186/1471-2164-13-550

    CAS  Google Scholar 

  113. Pavlou AK, Reichert JM (2004) Recombinant protein therapeutics—success rates, market trends and values to 2010. Nat Biotechnol 22(12):1513–1519. doi:10.1038/nbt1204-1513

    CAS  PubMed  Google Scholar 

  114. Pedersen H, Carlsen M, Nielsen J (1999) Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl Environ Microbiol 65(1):11–19

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Pfeffer M, Maurer M, Kollensperger G, Hann S, Graf AB, Mattanovich D (2011) Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure. Microb Cell Fact 10:47. doi:10.1186/1475-2859-10-47

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Puri A, Neelamegham S (2012) Understanding glycomechanics using mathematical modeling: a review of current approaches to simulate cellular glycosylation reaction networks. Ann Biomed Eng 40(4):816–827. doi:10.1007/s10439-011-0464-5

    PubMed Central  PubMed  Google Scholar 

  117. Raiford DW, Heizer EM, Miller RV, Akashi H, Raymer ML, Krane DE (2008) Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae? J Mol Evol 67:621–630. doi:10.1007/s00239-008-9162-9

    CAS  PubMed  Google Scholar 

  118. Rodríguez-Limas WA, Tannenbaum V, Tyo KEJ (2014) Blocking endocytotic mechanisms to improve heterologous protein titers in Saccharomyces cerevisiae. Biotechnol Bioeng. doi:10.1002/bit.25360

    PubMed  Google Scholar 

  119. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  120. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199

    CAS  PubMed  Google Scholar 

  121. Ronda C, Pedersen LE, Hansen HG, Kallehauge TB, Betenbaugh MJ, Nielsen AT, Kildegaard HF (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616. doi:10.1002/bit.25233

    CAS  PubMed  Google Scholar 

  122. Rose T, Sandig V, VON HH, Winkler K (2012) Enhancement of protein production yield mediated by a fast shuttling cdc42 gtpase. Google Patents

  123. Rudra D, Mallick J, Zhao Y, Warner JR (2007) Potential interface between ribosomal protein production and pre-rRNA processing. Mol Cell Biol 27:4815–4824. doi:10.1128/MCB.02062-06

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Rupp O, Becker J, Brinkrolf K, Timmermann C, Borth N, Puhler A, Noll T, Goesmann A (2014) Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines. PLoS One 9(1):e85568. doi:10.1371/journal.pone.0085568

    PubMed Central  PubMed  Google Scholar 

  125. Sandler SI, Orbey H (1991) On the thermodynamics of microbial growth processes. Biotechnol Bioeng 38(7):697–718. doi:10.1002/bit.260380704

    CAS  PubMed  Google Scholar 

  126. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63. doi:10.1016/j.mrfmmm.2004.06.056

    PubMed  Google Scholar 

  127. Schryer DW, Peterson P, Paalme T, Vendelin M (2009) Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks. Int J Mol Sci 10:1697–1718. doi:10.3390/ijms10041697

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Selvarasu S, Ho YS, Chong WP, Wong NS, Yusufi FN, Lee YY, Yap MG, Lee DY (2012) Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng 109(6):1415–1429. doi:10.1002/bit.24445

    CAS  PubMed  Google Scholar 

  129. Seth G, Philp RJ, Lau A, Jiun KY, Yap M, Hu WS (2007) Molecular portrait of high productivity in recombinant NS0 cells. Biotechnol Bioeng 97(4):933–951. doi:10.1002/bit.21234

    CAS  PubMed  Google Scholar 

  130. Sheikh K, Forster J, Nielsen LK (2005) Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21(1):112–121. doi:10.1021/bp0498138

    CAS  PubMed  Google Scholar 

  131. Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 88(4):474–488. doi:10.1002/bit.20272

    CAS  PubMed  Google Scholar 

  132. Spahn PN, Lewis NE (2014) Systems glycobiology for glycoengineering. Curr Opin Biotechnol 30:218–224. doi:10.1016/j.copbio.2014.08.004

    CAS  PubMed  Google Scholar 

  133. Tigges M, Fussenegger M (2006) Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab Eng 8(3):264–272. doi:10.1016/j.ymben.2006.01.006

    CAS  PubMed  Google Scholar 

  134. Tyo KEJ, Liu Z, Petranovic D, Nielsen J (2012) Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biol 10:16. doi:10.1186/1741-7007-10-16

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Valkonen M, Penttila M, Saloheimo M (2003) Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2065–2072

    CAS  PubMed Central  PubMed  Google Scholar 

  136. van Rensburg E, den Haan R, Smith J, van Zyl WH, Görgens JF (2012) The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 96:197–209. doi:10.1007/s00253-012-4037-9

    CAS  PubMed  Google Scholar 

  137. Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59:49–63

    CAS  PubMed  Google Scholar 

  138. Voedisch B, Patoux A, Sterkenburgh J, Buchs M, Barry E, Allard C, Geisse S (2011) About making a CHO production cell line “research-friendly” by genetic engineering. BMC Proc 5(8):132. doi:10.1186/1753-6561-5-S8-P132

    Google Scholar 

  139. Wahrheit J, Nicolae A, Heinzle E (2011) Eukaryotic metabolism: measuring compartment fluxes. Biotechnol J 6(9):1071–1085. doi:10.1002/biot.201100032

    CAS  PubMed  Google Scholar 

  140. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–924. doi:10.1038/nbt0910-917

    CAS  PubMed  Google Scholar 

  141. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30(5):1119–1139. doi:10.1016/j.biotechadv.2011.09.012

    CAS  PubMed  Google Scholar 

  142. Whiteley EM, Hsu TA, Betenbaugh MJ (1997) Modeling assembly, aggregation, and chaperoning of immunoglobulin G production in insect cells. Biotechnol Bioeng 56(1):106–116. doi:10.1002/(SICI)1097-0290(19971005)56:1<106:AID-BIT12>3.0.CO;2-I

    CAS  PubMed  Google Scholar 

  143. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Micro 3(2):119–128. doi:10.1038/nrmicro1087

    CAS  Google Scholar 

  144. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. doi:10.1038/nbt1026

    CAS  PubMed  Google Scholar 

  145. Xu P, Dai X-P, Graf E, Martel R, Russell R (2014) Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines. Biotechnol Prog 30(6):1457–1468. doi:10.1002/btpr.1957

    CAS  PubMed  Google Scholar 

  146. Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d’Anjou M, Pollard D, Potgieter T (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27(6):1744–1750. doi:10.1002/btpr.695

    CAS  PubMed  Google Scholar 

  147. Yee JC, Gerdtzen ZP, Hu WS (2009) Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng 102(1):246–263. doi:10.1002/bit.22039

    CAS  PubMed  Google Scholar 

  148. Young CL, Robinson AS (2014) Protein folding and secretion: mechanistic insights advancing recombinant protein production in S. cerevisiae. Curr Opin Biotech 30:168–177. doi:10.1016/j.copbio.2014.06.018

    CAS  PubMed  Google Scholar 

  149. Young E, Alper H (2010) Synthetic biology: tools to design, build, and optimize cellular processes. J Biomed Biotechnol. doi:10.1155/2010/130781

    Google Scholar 

  150. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The information and views set out in this article are those of the authors and do not necessarily reflect the official opinion of author’s institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Heinzle.

Additional information

Special Issue: Metabolic Engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, T., Niklas, J. & Heinzle, E. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells. J Ind Microbiol Biotechnol 42, 453–464 (2015). https://doi.org/10.1007/s10295-014-1569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1569-2

Keywords

Navigation